IQ scores for adult students age 25-45 have a bell-shaped distribution with a mean of 100 and a standard deviation of 15.sing the Empirical Rule, what percentage of adult students age 25-45 have IQ scores between 70 and 130?
The proportion is approx 95%.
In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.
My best estimate is around 1.5 standard deviations away from the norm.
In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.
When using Chebyshev's Theorem the minimum percentage of sample observations that will fall within two standard deviations of the mean will be __________ the percentage within two standard deviations if a normal distribution is assumed Empirical Rule smaller than greater than the same as
95%
The proportion is approx 95%.
In a normally distributed data set, approximately 95% of the data falls within two standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data falls within one standard deviation and about 99.7% falls within three standard deviations. Therefore, two standard deviations capture a significant majority of the data points.
95
My best estimate is around 1.5 standard deviations away from the norm.
The empirical rule is 68 - 95 - 99.7. 68% is the area for +/- 1 standard deviation (SD) from the mean, 95% is the area for +/- 2 SD from the mean; and 99.7% is the area for +/- 3 SD from the mean.
In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.
The bell curve, also known as the normal distribution, is a symmetrical probability distribution that follows the empirical rule. The empirical rule states that for approximately 68% of the data, it lies within one standard deviation of the mean, 95% within two standard deviations, and 99.7% within three standard deviations when data follows a normal distribution. This relationship allows us to make predictions about data distribution based on these rules.
When using Chebyshev's Theorem the minimum percentage of sample observations that will fall within two standard deviations of the mean will be __________ the percentage within two standard deviations if a normal distribution is assumed Empirical Rule smaller than greater than the same as
How many standard deviations is 16.50 from the mean?
Nearly all the values in a sample from a normal population will lie within three standard deviations of the mean. Please see the link.
The sum of standard deviations from the mean is the error.