The wavelength would increase by the same proportion.
Velocity = Frequency * Wavelength. If the wavelength increases and the frequency stays the same, then the speed of the wave will increase.
Wavelength = (speed) divided by (frequency) Frequency = (speed) divided by (wavelength) Speed = (frequency) times (wavelength)
Speed = (frequency) times (wavelength) Frequency = (speed) divided by (wavelength) Wavelength = (speed) divided by (frequency)
Frequency = (speed) / (wavelength)
I believe that the speed will remain constant, and the new wavelength will be half of the original wavelength. Speed = (frequency) x (wavelength). This depends on the method used to increase the frequency. If the tension on the string is increased while maintaining the same length (like tuning up a guitar string), then the speed will increase, rather than the wavelength.
If the speed is increased and the frequency stays the same, the wavelength will also increase. Wavelength is inversely proportional to speed for a constant frequency, so as the speed increases, the wavelength will also increase.
Velocity = Frequency * Wavelength. If the wavelength increases and the frequency stays the same, then the speed of the wave will increase.
If the frequency of a light wave is increased by a factor of 3, the wavelength will decrease by a factor of 1/3. This is because the speed of light remains constant in a given medium, so as frequency increases, wavelength has to decrease to maintain that speed.
When the wavelength of a wave is decreased, the frequency increases. This relationship is defined by the equation: frequency = speed of light / wavelength. Conversely, when the wavelength is increased, the frequency decreases.
As speed increases, the wavelength and frequency of a wave are inversely proportional. This means that as speed increases, the wavelength shortens, and the frequency increases. This relationship is described by the equation: speed = frequency x wavelength.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
i
frequency x wavelength = speedSo, if you increase frequency, the wavelength decreases, and vice versa.