answersLogoWhite

0

Parabola: 1+12x-6x^2

Factorizing: -6(x^2 -2x -1/6)

Completing the square: -6((x-1)^2 -1 -1/6) => -6(x-1)^2 +7

Vertex of parabola is at: (1, 7)

User Avatar

Wiki User

8y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

The vertex of this parabola is at 3 1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).


To find the value of a in a parabola opening left or right subtract the x value of the parabola at the vertex from the x value of the point on the parabola that is one unit the vertex?

Above


To find the value of a in a parabola opening up or down, subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the of the vertex?

right


The vertex of this parabola is at (-3 -1). When the y-value is 0 the x-value is 4. What is the coefficient of the squared term in the parabola's equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Here, the vertex is ((-3, -1)), so the equation becomes (y = a(x + 3)^2 - 1). Given that when (y = 0), (x = 4), we can substitute these values into the equation to find (a): [0 = a(4 + 3)^2 - 1 \implies 0 = a(7^2) - 1 \implies 1 = 49a \implies a = \frac{1}{49}.] Thus, the coefficient of the squared term is (\frac{1}{49}).


How do you find the vertex of the parabola y equals -4x2 - 16x - 11?

You would convert it to vertex form by completing the square. You can also find the optimum value as optimum value and vertex are the same.

Related Questions

To find the value of a in a parabola opening up or down subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the of the vertex?

To find the value of a in a parabola opening up or down subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the right of the vertex.


The vertex of this parabola is at 3 1 When the y-value is 0 the x-value is 4 What is the coefficient of the squared term in the parabolas equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).


To find the value of a in a parabola opening left or right subtract the x value of the parabola at the vertex from the x value of the point on the parabola that is one unit the vertex?

Above


To find the value of a in a parabola opening up or down, subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the of the vertex?

right


The vertex of this parabola is at (-3 -1). When the y-value is 0 the x-value is 4. What is the coefficient of the squared term in the parabola's equation?

To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Here, the vertex is ((-3, -1)), so the equation becomes (y = a(x + 3)^2 - 1). Given that when (y = 0), (x = 4), we can substitute these values into the equation to find (a): [0 = a(4 + 3)^2 - 1 \implies 0 = a(7^2) - 1 \implies 1 = 49a \implies a = \frac{1}{49}.] Thus, the coefficient of the squared term is (\frac{1}{49}).


How do you find the vertex of the parabola y equals -4x2 - 16x - 11?

You would convert it to vertex form by completing the square. You can also find the optimum value as optimum value and vertex are the same.


If The vertex of a parabola is -4 -1 when the y-value is 0 the x-value is 2 what is the coefficient of the squared expression in the parabolas equation?

To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex. Given the vertex is ((-4, -1)), the equation becomes ( y = a(x + 4)^2 - 1 ). When (y = 0) and (x = 2), substituting these values gives (0 = a(2 + 4)^2 - 1), leading to (0 = a(6^2) - 1) or (1 = 36a). Therefore, (a = \frac{1}{36}), which is the coefficient of the squared expression.


What is the vertex for the parabola y equals x squared plus 4x plus 5?

The vertex of a parabola is the minimum or maximum value of the parabola. To find the maximum/minimum of a parabola complete the square: x² + 4x + 5 = x² + 4x + 4 - 4 + 5 = (x² + 4x + 4) + (-4 + 5) = (x + 2)² + 1 As (x + 2)² is greater than or equal to 0, the minimum value (vertex) occurs when this is zero, ie (x + 2)² = 0 → x + 2 = 0 → x = -2 As (x + 2)² = 0, the minimum value is 0 + 1 = 1. Thus the vertex of the parabola is at (-2, 1).


How do you find the vertex of the parabola 3x squared -x plus 4?

7


How do you sketch graphs and write equations for parabolas?

If you want to sketch graphs you have to observe the parabola first then find the vertex afterwards you connect them and you've arrived at your answer. In order to write equations for parabolas it has to have x square in it. The standard equation for a parabola is (y - k)2 = 4a(x - h) where h and k are the x- and y-coordinates of the vertex of the parabola and 'a' is a non zero real number. This website at the related link should help, for the equation at least. A parabola is a basic U shaped graph that meets at one point called a vertex. The equation for Andy parabola must have a number being squared such as x2.


The vertex of the parabola below is at the point (-4-2) which equation below could be one for parabola?

-2


What does calculate the vertex mean in math terms?

Most likely you have an equation of a parabola. The vertex of a parabola is the location where it changes from going down, to going up (a simplified explanation). Most parabolas that we think of are oriented up or down (the axis is parallel to the y axis), but they could be oriented sideways, or even at an angle. To calculate the vertex of a parabola ususally means to find the coordinates of the vertex.