answersLogoWhite

0

The tangent-tangent angle is formed by two tangents drawn from a point outside a circle to points on the circle. To find the measure of the tangent-tangent angle, you take half the difference of the intercepted arcs. In this case, the arcs measure 135 degrees and 225 degrees. Therefore, the measure of the tangent-tangent angle is (\frac{1}{2} (225^\circ - 135^\circ) = \frac{1}{2} (90^\circ) = 45^\circ).

User Avatar

AnswerBot

4w ago

What else can I help you with?

Related Questions

A tangent-tangent angle intercepts two arcs that measure 149 and 211 What is the measure of the tangent-tangent angle?

31 degrees


A tangent-tangent angle intercepts two arcs that measure 135 and 225 What is the measure of the tangent-tangent angle?

45 degrees


A tangent-tangent angle intercepts two arcs that measure 124 and 236 What is the measure of the tangent-tangent angle?

236-124/2=56 degrees


A tangent-tangent angle intercepts two arcs that measure 164 and 196 What is the measure of the tangent-tangent angle?

196-164/2= 16


What is the measure of an angle formed by a tangent and a secant drawn to a circle from an external point if it intercepts arcs whose measures are 70 and 30?

20 degrees


If the measure of a tangent-chord angle is 68 degrees then what is the measure of the intercepted arc inside the angle?

136


If the measure of a tangent-chord angle is 54 degrees then what is the measure of the intercepted arc inside the angle?

108 ;)


The measure of a tangent chord angle is 68 then what is the measure of the intercepted arc inside the angle?

136 degrees


The measure of a tangent chord angle is 54 then what is the measure of the intercepted arc inside the angle?

108 degrees


If Measure of tangent-chord angle is 74 degrees then what is the intercepted arc inside the angle?

148


Segment DC is a diameter of circle A in the figure below. If angle DAB measures 34 degrees what is the measure of arc BC?

In a circle, the measure of an angle formed by a chord and a tangent at a point on the circle is half the measure of the intercepted arc. Since segment DC is a diameter, angle DAB is an inscribed angle that intercepts arc DB. Therefore, the measure of arc DB is twice the measure of angle DAB, which is 68 degrees. Since arc BC is the remainder of the circle, arc BC measures 360 degrees - 68 degrees = 292 degrees.


What is the measure of the angle formed between a tangent and the diameter of a circle?

It is 90 degrees between the circle's diameter and its tangent