16.97056274
The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.
Half the square root of the square radius equals the circle radius.
98 cm^2
The radius length r of the inscribed circle equals to one half of the length side of the square, 10 cm. The area A of the inscribed circle: A = pir2 = 102pi ≈ 314 cm2 The radius length r of the circumscribed circle equals to one half of the length diagonal of the square. Since the diagonals of the square are congruent and perpendicular to each other, and bisect the angles of the square, we have sin 45⁰ = length of one half of the diagonal/length of the square side sin 45⁰ = r/20 cm r = (20 cm)(sin 45⁰) The area A of the circumscribed circle: A = pir2 = [(20 cm)(sin 45⁰)]2pi ≈ 628 cm2.
Finding a circle with the same area as a square is known as squaring the circle. It has been proven to be impossible. (this was done in 1882) I have included some references as links to explain why this cannot be done. If you have a circle inscribed a square, then its radius is 1/2 of the side length of the square or its diameter is the length of a side. If this is what you mean then the ratio of the side of the square to the radius of the circle is 1 to 1/2 or 2 to 1.
The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.The formula for the area of a circle is pi x radius2. The radius is half the diameter, and the diameter of an inscribed circle is the same as the length of a side of the square.
The largest rectangle would be a square. If the circle has radius a, the diameter is 2a. This diameter would also be the diameter of a square of side length b. Using the Pythagorean theorem, b2 + b2 = (2a)2. 2b2 = 4a2 b2 = 2a2 b = √(2a2) or a√2 = the length of the sides of the square The area of a square of side length b is therefore (√(2a2))2 = 2a2 which is the largest area for a rectangle inscribed in a circle of radius a.
Half the square root of the square radius equals the circle radius.
6 cubic units ( from a mathematical brain)
A square does not have a radius, as a radius is a line segment that connects the center of a circle to any point on its circumference. In a square, the equivalent of a radius would be the distance from the center to a vertex, which is half the length of a diagonal. To find this distance, you can use the Pythagorean theorem by dividing the length of one side by the square root of 2.
If yo have the area of the circle, the square is irrelevant. Radius = sqrt(Area/pi)
The answer is 72, i think!
98 cm^2
The area of square is : 100.0
The radius length r of the inscribed circle equals to one half of the length side of the square, 10 cm. The area A of the inscribed circle: A = pir2 = 102pi ≈ 314 cm2 The radius length r of the circumscribed circle equals to one half of the length diagonal of the square. Since the diagonals of the square are congruent and perpendicular to each other, and bisect the angles of the square, we have sin 45⁰ = length of one half of the diagonal/length of the square side sin 45⁰ = r/20 cm r = (20 cm)(sin 45⁰) The area A of the circumscribed circle: A = pir2 = [(20 cm)(sin 45⁰)]2pi ≈ 628 cm2.
If the circle is inscribed in the square, the side length of the square is the same as the diameter of the circle which is twice its radius: → area_square = (2 × 5 in)² = 10² sq in = 100 sq in If the circle circumscribes the square, the diagonal of the square is the same as the diameter of the circle; Using Pythagoras the length of the side of the square can be calculated: → diagonal = 2 × 5 in = 10 in → side² + side² = diagonal² → 2 × side² = diagonal² → side² = diagonal² / 2 → side = diagonal / √2 → side = 10 in / √2 → area _square = (10 in / √2)² = 100 sq in / 2 = 50 sq in.
The diameter of the circle equals the length of a side of the square