The number of sequences is 27 or 128.
Knowing the results in advance, there is a 7/10 chance that the first toss is heads. In this case "seven out of ten" is quite literal. The first toss is one of the 10, and 7 of them came up heads, so 7/10 is the chance that this particular one is one of the heads.
A sequence of seven numbers is a set of numbers arranged in a specific order. Each number in the sequence is called a term. For example, a sequence of seven numbers could be {1, 3, 5, 7, 9, 11, 13}, where each term differs by a constant value of 2. Sequences can follow different patterns, such as arithmetic sequences where each term is found by adding a constant value to the previous term, or geometric sequences where each term is found by multiplying the previous term by a constant value.
Experimental Probability: The number of times the outcome occurs compared to the total number of trials. example: number of favorable outcomes over total number of trials. Amelynn is flipping a coin. She finished the task one time, then did it again. Here are her results: heads: three times and tails: seven times. What is the experimental probability of the coin landing on heads? Answer: 3/10 Explanation: Amelynn flipped the coin a total of 10 times, getting heads 3 times. Therefore, the answer is: 3/10.
The probability of getting only one tails is (1/2)7. With seven permutations of which flip is the tails, this gives a probability of: P(six heads in seven flips) = 7*(1/2)7 = 7/128
add me at eryn_faria@hotmail.com to learn all about math please add me for help Experimental Probability: The number of times the outcome occurs compared to the total number of trials. example: number of favorable outcomes over total number of trials. Amelynn is flipping a coin. She finished the task one time, then did it again. Here are her results: heads: three times and tails: seven times. What is the experimental probability of the coin landing on heads? Answer: 3/10 Explanation: Amelynn flipped the coin a total of 10 times, getting heads 3 times. Therefore, the answer is: 3/10.
It is 1/2^7 = 1/128.
you have 63 chances out of 64. i once witnessed a coin being tossed seven times and giving up 7 consecutive heads. we never tried it an eighth time, 7 heads and you had to go to the bar.
Knowing the results in advance, there is a 7/10 chance that the first toss is heads. In this case "seven out of ten" is quite literal. The first toss is one of the 10, and 7 of them came up heads, so 7/10 is the chance that this particular one is one of the heads.
If you toss a coin 8 times and there are 7 heads, then there must be one tail each time. So how many ways can we get one tail? It can occur first, such as THHHHHHH or second HTHHHHHH etc. There are 8 places to put the T so there are 8 ways to have 7 heads and 1 tail.
Hydra
I don't know what sequences you mean; she did write the seven Harry Potter books (and three additional books).
The probability of one event or the other occurring is the probability of one plus the probability of the other. The probability of getting 3 heads is the probability of 3 heads (1/23) multiplied by the probability of 4 tails (1/24) multiplied by the number of possible ways this could happen. This is 7c3 or 35. Thus the probability of 3 heads is 0.2734375. The probability of 2 tails is the probability of 2 tails (1/22) multiplied by the probability of 5 heads (1/25) multiplied by the number of ways this could happen. That is 7c5 or 21. Thus the probability of 2 tails is 0.1640625 The probability of one or the other is the sum of their probabilities: 0.1640625 + 0.2734375 = 0.4375 Thus the probability of getting 3 heads or 2 tails is 0.4375.
1. Function2. Location3. Shape4. Size5. Direction of muscle fascicles6. Origin and Insertion7. Number of heads (origin)
A sequence of seven numbers is a set of numbers arranged in a specific order. Each number in the sequence is called a term. For example, a sequence of seven numbers could be {1, 3, 5, 7, 9, 11, 13}, where each term differs by a constant value of 2. Sequences can follow different patterns, such as arithmetic sequences where each term is found by adding a constant value to the previous term, or geometric sequences where each term is found by multiplying the previous term by a constant value.
The mythical hydra had seven heads. There are seven days in one week.
Seven of your "friends" heads!
The requirement that one coin is a head is superfluous and does not matter. The simplified question is "what is the probability of obtaining exactly six heads in seven flips of a coin?"... There are 128 permutations (27) of seven coins, or seven flips of one coin. Of these, there are seven permutations where there are exactly six heads, i.e. where there is only one tail. The probability, then, of tossing six heads in seven coin tosses is 7 in 128, or 0.0546875.