please cans someone tell me what the answer is if x ='s 3 what is the answer to this - 2(x-1) i will be very greatful if you told me the answer thankyou!!
Chat with our AI personalities
No it doesn't. It only occurs in multiplication or in brackets. For example do -1+-1 which equals -2.
Let P(x1, y1), Q(x2, y2), and M(x3, y3).If M is the midpoint of PQ, then,(x3, y3) = [(x1 + x2)/2, (y1 + y2)/2]We need to verify that,√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2] = √[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]Let's work separately in both sides. Left side:√[[(x1 + x2)/2 - x1]^2 + [(y1 + y2)/2 - y1]^2]= √[[(x1/2 + x2/2)]^2 - (2)(x1)[(x1/2 + x2/2)) + x1^2] + [(y1/2 + y2/2)]^2 - (2)(y1)[(y1/2 + y2/2)] + y1^2]]= √[[(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 - (x1)^2 - (x1)(x2) + (x1)^2 +[(y1)^2]/4 + [(y1)(y2)]/2 + [(y2)^2]/4 - (y1)^2 - (y1)(y2) + (y1)^2]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Right side:√[[x2 - (x1 + x2)/2]^2 + [y2 - (y1 + y2)/2]^2]]= √[[(x2)^2 - (2)(x2)[(x1/2 + x2/2)] + [(x1/2 + x2/2)]^2 + [(y2)^2 - (2)(y2)[(y1/2 + y2/2)] + [(y1/2 + y2/2)]^2]]= √[[(x2)^2 - (x1)(x2) - (x2)^2 + [(x1)^2]/4 + [(x1)(x2)]/2 + [(x2)^2]/4 + (y2)^2 - (y1)[(y2) - (y2)^2 + [(y1)^2]/4) + [(y1)(y2)]/2 + [(y2)^2]/4]]= √[[(x1)^2]/4 - [(x1)(x2)]/2 + [(x2)^2]/4 + [(y1)^2]/4 - [(y1)(y2)]/2 + [(y2)^2]/4]]Since the left and right sides are equals, the identity is true. Thus, the length of PM equals the length of MQ. As the result, M is the midpoint of PQ
smart alec answer: as x=4 proper answer: as x1/2=2, or as √x=2
shut up and do your hw
x1:y1 = x2:y2 4:-2 = x2:5 x2 = (4*5)/-2 x2 = -10