Best Answer

true

Lvl 14

Q: Is this statement true or falseA perpendicular bisector is the set of points that are equidistant from the endpoints of the bisected segment.?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

They are perpendicular and one diagonal is bisected.

The bisector and the line segment are perpendicular to each other.

A plane is the set of all points in 3-D space equidistant from two points, A and B. If it will help to see it, the set of all points in a plane that are equidistant from points A and B in the plane will be a line. Extend that thinking off the plane and you'll have another plane perpendicular to the original plane, the one with A and B in it. And the question specified that A and B were in 3-D space. Another way to look at is to look at a line segment between A and B. Find the midpoint of that line segment, and then draw a plane perpendicular to the line segment, specifying that that plane also includes the midpoint of the line segment AB. Same thing. The set of all points that make up that plane will be equidistant from A and B. At the risk of running it into the ground, given a line segment AB, if the line segment is bisected by a plane perpendicular to the line segment, it (the plane) will contain the set of all points equidistant from A and B.

False. "If" and "then" are NOT included in the hypothesis and conclusion... (:

Yes. They have equal halves when bisected.

Related questions

The diagonals of a kite are perpendicular, and one diagonal is bisected. ~

They are perpendicular and one diagonal is bisected.

The diagonals of a rhombus are perpendicular to each other and are bisected at 90 degrees

The bisector and the line segment are perpendicular to each other.

A plane is the set of all points in 3-D space equidistant from two points, A and B. If it will help to see it, the set of all points in a plane that are equidistant from points A and B in the plane will be a line. Extend that thinking off the plane and you'll have another plane perpendicular to the original plane, the one with A and B in it. And the question specified that A and B were in 3-D space. Another way to look at is to look at a line segment between A and B. Find the midpoint of that line segment, and then draw a plane perpendicular to the line segment, specifying that that plane also includes the midpoint of the line segment AB. Same thing. The set of all points that make up that plane will be equidistant from A and B. At the risk of running it into the ground, given a line segment AB, if the line segment is bisected by a plane perpendicular to the line segment, it (the plane) will contain the set of all points equidistant from A and B.

False. "If" and "then" are NOT included in the hypothesis and conclusion... (:

Yes. The bisector of one angle of a triangle is the perpendicular bisector of theopposite side if the bisected angle is the vertex angle of an isosceles triangle,or any angle of an equilateral triangle.

Yes. They have equal halves when bisected.

A bisected angle.

Bisected mean to halve an angle. For instance, a right-angle (90- degrees) is changed to two 45 degree angles when bisected.

Yes, any diameter which is perpendicular to a chord bisects said chord. This can be proved most easily with a picture, but is proved using a congruent triangle proof. Both triangles include the points at the center of the circle and the intersection of the diameter and chord. The other points should be the endpoints of the chord. They are congruent by hypotenuse leg; it was given that they are right triangle by the "perpendicular", the "leg" is the segment between the center of the circle and the intersection, and it is equal in both triangles because it is the same segment in both triangles. The hypotenuses are equal because both are radii of the circle. Because the triangles are congruent, their sides must be so the two halves of the chord are congruent, and therefore the chord is bisected by the diameter.

That will depend entirely on the angle bisected which has not been given.