answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: Is 0 an element of empty set?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Is the empty set an element of every set?

No. An empty set is a subset of every set but it is not an element of every set.


What can you say empty sets or null sets?

empty set or null set is a set with no element.


Does a set with no element belong to any kind of set?

I believe you are talking about subsets. The empty set (set with no elements) is a subset of any set, including of the empty set. ("If an object is an element of set A, then it is also an element of set B." Since no element is an element of set A, the statement is vacuously true.)


Why every set has an empty set?

Any set has the empty set as subset A is a subset of B if each element of A is an element of B For the empty set ∅ the vacuum property holds For every element of ∅ whatever property holds, also being element of an arbitrary set B, therefore ∅ is a subset of any set, even itself ∅ has an unique subset: itself


What is trivial subset?

The trivial subsets of a set are those subsets which can be found without knowing the contents of the set. The empty set has one trivial subset: the empty set. Every nonempty set S has two distinct trivial subsets: S and the empty set. Explanation: This is due to the following two facts which follow from the definition of subset: Fact 1: Every set is a subset of itself. Fact 2: The empty set is subset of every set. The definition of subset says that if every element of A is also a member of B then A is a subset of B. If A is the empty set then every element of A (all 0 of them) are members of B trivially. If A = B then A is a subset of B because each element of A is a member of A trivially.