An irrational number must not have a repeating sequence. If we have a number, such as 0.333333...., we can turn this into a rational number as such.Let x = 0.333333......, then multiply both sides by 10:10x = 3.333333......Now subtract the first equation from the second, since the 3's go on forever, they will cancel each other out and you're left with:9x = 3. Now divide both sides by 9: x = 3/9 which is 1/3, a rational number equal to 0.3333333....If a number can be expressed as the ratio a/b, where a and b are integers (with the restriction that b not equal zero), then the number is rational. If you cannot express the number as such, then it is irrational.
No. It could be a rational or an irrational
Yes, it does.
yes
There are essentially three forms:Terminating decimals: 386 or 23.567,Recurring decimals: 36.572343434... (with 34 repeating),Non-terminating infinite decimals: these represent irrational numbers for which the digits after the decimal point go on for ever without falling into a repeating pattern.
Actually, a repeating decimal is not necessarily an irrational number. A repeating decimal is a decimal number that has a repeating pattern of digits after the decimal point. While some repeating decimals can be irrational, such as 0.1010010001..., others can be rational, like 0.3333... which is equal to 1/3. Irrational numbers are numbers that cannot be expressed as a simple fraction, and they have non-repeating, non-terminating decimal representations.
Any repeating decimal digits (this includes repetition after a certain point, e.g. 2.4510101010...) is a rational number.
81 as well as all whole numbers are rational numbers. Any number that can be written as a fraction is a rational number. An irrational number can be written as a decimal, but not as a fraction. An irrational number has endless non-repeating digits to the right of the decimal point. An example of an irrational number would be pi: π = 3.141592…
An irrational number must not have a repeating sequence. If we have a number, such as 0.333333...., we can turn this into a rational number as such.Let x = 0.333333......, then multiply both sides by 10:10x = 3.333333......Now subtract the first equation from the second, since the 3's go on forever, they will cancel each other out and you're left with:9x = 3. Now divide both sides by 9: x = 3/9 which is 1/3, a rational number equal to 0.3333333....If a number can be expressed as the ratio a/b, where a and b are integers (with the restriction that b not equal zero), then the number is rational. If you cannot express the number as such, then it is irrational.
No. It could be a rational or an irrational
None, since 57 is NOT an irrational number.
Any number with a defined end point, including 2.14, is a rational number.
It is rational.A number cannot be both rational and irrational.
An Irrational Number is a Number that cannot be converted to a Fraction and has an unstoppable amount of numbers after the decimal point. For Example, Pi is the most famous irrational number. If I didn't answer your question, search up Irrational Numbers.
This number is rational: If the number is exact as given, without the final period/decimal point, it is rational because it can be written with a finite number of digits. If the number is intended to be indicated as the repeating decimal -155.23333333..., then it is rational because numbers that can be written as repeating decimals are rational; this particular one is the sum of -155.2 - (3/100), which can be written as -15523/100.
There is no number which can be rational and irrational so there is no point in asking "how".
Yes.