Yes, the point at which a tangent line intersects a circle is indeed called the point of tangency. At this point, the tangent line touches the circle at exactly one location, and it is perpendicular to the radius drawn to that point. This relationship is fundamental in geometry, particularly in the study of circles and tangents.
True
A secant line touches a circle at two points. On the other hand a tangent line meets a circle at one point.
a tangent to the circle
The tangent line. A secant line hits the circle in two places and forms a cord, but the tangent line only hits the circle in one point and is always perpendicular to the radius of the circle which exists at that point.
Equation of circle: x^2 +y^2 -6x+4y+5 = 0 Completing the squares: (x-3)^2 +(y+2)^2 = 8 Radius of circle: square root of 8 Center of circle: (3, 2) The tangent lines touches the circle on the x axis at: (1, 0) and (5, 0) 1st tangent equation: y = x-1 2nd tangent equation: y = -x+5 Note that the tangent line of a circle meets its radius at right angles
true
True
There is no specific name for such an angle.
The tangent of a circle always meets the radius of a circle at right angles.
The radius and the tangent are perpendicular at the point on the circle where they meet.
A secant line touches a circle at two points. On the other hand a tangent line meets a circle at one point.
a tangent to the circle
The tangent line. A secant line hits the circle in two places and forms a cord, but the tangent line only hits the circle in one point and is always perpendicular to the radius of the circle which exists at that point.
tangant of circle intercepts it only on one point. In real the point where tangent meets the circle and intercepts it are same
A circle's tangent is exactly the same as a triangle's tangent. If you look at a circle, you can make the radius the hypotenuse. Then make a vertical line from the point, and a horizontal line from the center. If you look, you have a triangle made inside the circle. This is why angles can be measured in radians, a unit that is derived from the circumference of a circle.-------------------------------------------------------------------------------------------By doing a little calculus, we find that the slope of the equation of a circle-the slope of the tangent line-is given by the tangent of an angle.AnswerEverything written above is correct, but doesn't have anything to do with tangents (in the circle sense of the word). Suppose you're given an angle theta. Draw a circle together with two radii, one horizontal and the other at an angle theta from the first one. (So far, this is the same as above.) Now draw the tangent to the circle at X, the point where the non-horizontal radius meets the circumference. Let Y be the point where this tangent meets the horizontal line through the centre. Then, assuming the radius is 1, tan(theta) is the distance XY, which is the length of part of the tangent.
Equation of circle: x^2 +y^2 -2x -6y +5 = 0 Completing the squares: (x-1)^2 +(y-3)^2 = 5 Center of circle: (1, 3) Tangent line from (3, 4) meets the x axis at: (5, 0) Distance from (5, 0) to (1, 3) = 5 using the distance formula
Equation of circle: x^2 +y^2 -6x+4y+5 = 0 Completing the squares: (x-3)^2 +(y+2)^2 = 8 Radius of circle: square root of 8 Center of circle: (3, 2) The tangent lines touches the circle on the x axis at: (1, 0) and (5, 0) 1st tangent equation: y = x-1 2nd tangent equation: y = -x+5 Note that the tangent line of a circle meets its radius at right angles