answersLogoWhite

0

Yes, a polynomial of degree 0 is a constant term. In mathematical terms, a polynomial is defined as a sum of terms consisting of a variable raised to a non-negative integer power multiplied by coefficients. Since a degree 0 polynomial has no variable component, it is simply a constant value.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Related Questions

What is the degree of a constant polynomial?

a constant polynomial has a degree zero (0).


What is the degree of the polynomial 7x plus 5?

The degree of the polynomial (7x + 5) is 1. This is because the highest exponent of the variable (x) in the expression is 1. The term (7x) is the only term that contributes to the degree, while (5) is a constant term with a degree of 0.


What kind of polynomial is -3-4?

The expression (-3 - 4) simplifies to (-7), which is a constant. A constant can be considered a polynomial of degree 0, as it does not contain any variables. Therefore, (-3 - 4) represents a polynomial of degree 0.


What is the coefficient term of degree 4?

The coefficient term of degree 4 in a polynomial is the constant that multiplies the (x^4) term. For example, in the polynomial (3x^4 + 2x^3 - x + 5), the coefficient of degree 4 is 3. If there is no (x^4) term present, the coefficient is considered to be 0.


How can you find a degree in a polynomial?

The degree of a polynomial is the highest degree of its terms. The degree of a term is the sum of the exponents of the variables that appear in it.7x2y2 + 4x2 + 5y + 13 is a polynomial with four terms. The first term has a degree of 4, the second term has a degree of 2, the third term has a degree of 1 and the fourth term has a degree of 0. The polynomial has a degree of 4.


Degree of a terms of polynomial?

The degree of a polynomial is the highest degree of its terms. The degree of a term is the sum of the exponents of the variables that appear in it.For example, the polynomial 8x2y3 + 5x - 10 has three terms. The first term has a degree of 5, the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial is degree five.


What are the kind of polynomial according to the number of degree?

Polynomials are classified based on their degree as follows: a polynomial of degree 0 is a constant polynomial, of degree 1 is a linear polynomial, of degree 2 is a quadratic polynomial, of degree 3 is a cubic polynomial, and of degree 4 is a quartic polynomial. Higher degree polynomials continue with quintic (degree 5), sextic (degree 6), and so on. The degree indicates the highest exponent of the variable in the polynomial.


What is the polynomial of degree 0?

A polynomial of degree 0 is a polynomial without any variables, such as 9.


How do you identify the degree on a polynomial?

The degree of a polynomial is identified by determining the highest exponent of the variable in the polynomial's expression. For example, in the polynomial (2x^3 + 4x^2 - x + 5), the highest exponent is 3, so the degree is 3. If the polynomial is a constant (like 5), its degree is 0, and if it's the zero polynomial, it's often considered to have no degree.


Why does the constant term of a polynomial written in standard form give you the y intercept of the graph?

In a polynomial written in standard form, the constant term is the value of the polynomial when the input variable (usually (x)) is zero. This means that when you set (x = 0), the polynomial evaluates to the constant term, which corresponds to the point where the graph intersects the y-axis. Therefore, the constant term directly represents the y-intercept of the graph.


Is 7 polynomial?

Yes, 7 is considered a polynomial. Specifically, it is a constant polynomial of degree 0, as it can be expressed in the form ( f(x) = 7 ). In general, any constant number qualifies as a polynomial since it can be represented without any variable terms.


How do you find the degree of polynomials?

First look at the degree of each term: this is the power of the variable. The highest such number, from all the terms in the polynomial is the degree of the polynomial. Thus x2 + 1/7*x + 3 has degree 2. x + 7 - 2x3 + 0.8x5 has degree 5.