When 'a' is positive in a quadratic function of the form (y = ax^2 + bx + c), the graph opens upwards. This means the vertex of the parabola is the lowest point on the graph, and as you move away from the vertex in either direction, the values of (y) increase.
The graph of a linear function is a straight line. It can have a positive slope, indicating an upward trend, or a negative slope, indicating a downward trend. The line can also be horizontal if the function has a slope of zero, representing a constant value. The overall shape is determined by the function's slope and y-intercept.
If x2 is negative it will have a maximum value If x2 is positive it will have a minimum value
A parabola. An arch opening either north or south of the x-axis depending on the sign of the coefficient (negative opens down, positive opens up).
the graph is called a line
It depends on the graph, and what the problem is asking, some are negative and others positive.
The negative sine graph and the positive sine graph have opposite signs: when one is negative, the other is positive - by exactly the same amount. The sine function is said to be an odd function. The two graphs for cosine are the same. The cosine function is said to be even.
the left end of the graph is going in a positive direction and the right end is going in a negative direction.
When 'a' is positive in a quadratic function of the form (y = ax^2 + bx + c), the graph opens upwards. This means the vertex of the parabola is the lowest point on the graph, and as you move away from the vertex in either direction, the values of (y) increase.
No, a circle graph is never a function.
This means that the function has reached a local maximum or minimum. Since the graph of the derivative crosses the x-axis, then this means the derivative is zero at the point of intersection. When a derivative is equal to zero then the function has reached a "flat" spot for that instant. If the graph of the derivative crosses from positive x to negative x, then this indicates a local maximum. Likewise, if the graph of the derivative crosses from negative x to positive x then this indicates a local minimum.
The relationship between a logarithmic function and its graph is that the graph of a logarithmic function is the inverse of an exponential function. This means that the logarithmic function "undoes" the exponential function, and the graph of the logarithmic function reflects this inverse relationship.
A zero of a function is a point at which the value of the function is zero. If you graph the function, it is a point at which the graph touches the x-axis.
The graph of a linear function is a straight line. It can have a positive slope, indicating an upward trend, or a negative slope, indicating a downward trend. The line can also be horizontal if the function has a slope of zero, representing a constant value. The overall shape is determined by the function's slope and y-intercept.
sine graph will be formed at origine of graph and cosine graph is find on y-axise
Yes the graph of a function can be a vertical or a horizontal line
Yes the graph of a function can be a vertical or a horizontal line