If I understand the question correctly, the answer is yes. Thanks to the transitive property of congruence.
Someone correct me if I am wrong, but I don't believe triangles can be "equal", only congruent. The measurements can be equal, but not the triangle itself.The triangle congruency postulates and theorems are:Side/Side/Side Postulate - If all three sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Side/Angle Postulate - If two angles and a side included within those angles of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Side/Angle/Side Postulate - If two sides and an angle included within those sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Angle/Side Theorem - If two angles and an unincluded side of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Hypotenuse/Leg Theorem - (right triangles only) If the hypotenuse and a leg of a right triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
Yes, if two angles and a non-included side of one triangle are congruent to the corresponding two angles and side of another triangle, then the triangles are congruent by the Angle-Angle-Side (AAS) postulate. This postulate states that if two angles and a side that is not between them are congruent in two triangles, the triangles must be identical in shape and size. Therefore, the triangles are congruent.
Corresponding sides are congruent with one another, meaning they have the same length/measurement
Yes.
Yes, they are.
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
Someone correct me if I am wrong, but I don't believe triangles can be "equal", only congruent. The measurements can be equal, but not the triangle itself.The triangle congruency postulates and theorems are:Side/Side/Side Postulate - If all three sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Side/Angle Postulate - If two angles and a side included within those angles of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Side/Angle/Side Postulate - If two sides and an angle included within those sides of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Angle/Angle/Side Theorem - If two angles and an unincluded side of a triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.Hypotenuse/Leg Theorem - (right triangles only) If the hypotenuse and a leg of a right triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.
Corresponding sides are congruent with one another, meaning they have the same length/measurement
Yes.
Yes, they are.
It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.
Yes, they are.
HyL Congruence Theorem : if a leg and the hypotenuse of one right triangle are congruent to a corresponding leg and the hypotenuse of another right triangle,then the triangles are congruent._eytiin cu ;)
There are several methods to prove that two triangles are congruent, including the Side-Side-Side (SSS) criterion, where all three sides of one triangle are equal to the corresponding sides of another triangle. Another method is the Angle-Side-Angle (ASA) criterion, which requires two angles and the included side of one triangle to be equal to the corresponding parts of another triangle. Additionally, the Side-Angle-Side (SAS) criterion can be used, which states that if two sides and the included angle of one triangle are equal to the corresponding parts of another triangle, the triangles are congruent.
The postulates that involve congruence are the following :SSS (Side-Side-Side) Congruence Postulate - If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.SAS (Side-Angle-Side) Congruence Postulate - If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.ASA (Angle-Side-Angle) Congruence Postulate - If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.The two other congruence postulates are :AA (Angle-Angle) Similarity Postulate - If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.
The Side-Side-Side (SSS) postulate states that if all three sides of one triangle are congruent to the corresponding sides of another triangle, then the two triangles are congruent. In other words, if the lengths of the three sides of one triangle are equal to the lengths of the corresponding three sides of another triangle, then the two triangles are congruent.
Let's draw the isosceles trapezoid ABCD, where AD ≅ BC, and mADC ≅ mBCD. If we draw the diagonals AC and BD of the trapezoid two congruent triangles are formed, ∆ ADC ≅ ∆ BDC (SAS Postulate: If two sides and the angle between them in one triangle are congruent to the corresponding parts in another triangle, then the triangles are congruent). Since these triangles are congruent, AC ≅ BD.