Yes, irrational.
Let p = root 2 and q = root 3. Then (q - p)2 = 5 - 2root6, which is irrational because it is the sum of an integer (5) and an irrational (2root6), and so q - p (which is root3 - root2) is irrational.
Chat with our AI personalities
No, it is not. Root2 and root 8 are each irrational. Root8 / root2 =2. 2 is not a member of the set.
Assume it's rational. Then 2 + root2 = some rational number q. Then root2 = q - 2. However, the rational numbers are well-defined under addition by (a,b) + (c,d) = (ad + bc, bd) (in other words, you can add two fractions a/b and c/d and always get another fraction of the form (ad + bc)/bd.) Therefore, q - 2 = q + (-2) is rational, since both q and -2 are rational. This implies root2 must be rational, which is a contradiction. Therefore the assumption that 2 + root2 is rational must be false.
Yes.
It could be either.
No, it is always irrational.