Without an equality sign the given expression can't be considered to be an equation.
No. This is not true. It is false. The equation is an example of direct variation.
The equation ( y = 4x + 1 ) is not a direct variation. In a direct variation, the relationship can be expressed in the form ( y = kx ), where ( k ) is a constant and there is no constant term added or subtracted. Since this equation includes the constant term ( +1 ), it does not meet the criteria for direct variation.
To determine the equation of a direct variation, you start by identifying the relationship between the two variables, typically represented as ( y ) and ( x ). The equation can be expressed in the form ( y = kx ), where ( k ) is the constant of variation. To find ( k ), you can use a set of values for ( y ) and ( x ) and solve for ( k ) by rearranging the equation to ( k = \frac{y}{x} ). Once you have ( k ), you can write the complete equation of the direct variation.
Graphs of direct variation pass through the origin so the y-intercept would be 0.
An equation in slope-intercept form (y = mx + b) represents a direct variation only when the y-intercept (b) is zero, making it (y = mx). If (b) is non-zero, the equation does not represent a direct variation, which is defined as a linear relationship that passes through the origin. Therefore, it is "sometimes" true that an equation in slope-intercept form represents a direct variation, depending on the value of (b).
find the direct variation equation 3x+y=0
There is only one equation that is given in the question and that equation is not a direct variation.
No. This is not true. It is false. The equation is an example of direct variation.
There are three ways: a table, a graph, and an equation.
The equation ( y = 4x + 1 ) is not a direct variation. In a direct variation, the relationship can be expressed in the form ( y = kx ), where ( k ) is a constant and there is no constant term added or subtracted. Since this equation includes the constant term ( +1 ), it does not meet the criteria for direct variation.
When two variables are related in such a way that the ratio of their values always remains the same, the two variables are said to be in direct variation. y=2x is direct variation y=x+2 is not direct variation
To determine the equation of a direct variation, you start by identifying the relationship between the two variables, typically represented as ( y ) and ( x ). The equation can be expressed in the form ( y = kx ), where ( k ) is the constant of variation. To find ( k ), you can use a set of values for ( y ) and ( x ) and solve for ( k ) by rearranging the equation to ( k = \frac{y}{x} ). Once you have ( k ), you can write the complete equation of the direct variation.
Y=1/x
equation, table or a graph
Graphs of direct variation pass through the origin so the y-intercept would be 0.
An equation in slope-intercept form (y = mx + b) represents a direct variation only when the y-intercept (b) is zero, making it (y = mx). If (b) is non-zero, the equation does not represent a direct variation, which is defined as a linear relationship that passes through the origin. Therefore, it is "sometimes" true that an equation in slope-intercept form represents a direct variation, depending on the value of (b).
y=3x is a direct variation in that y varies directly with x by a factor of 3. Any linear equation (a polynomial of degree 1, which is a polynomial equation with a highest exponent of 1), is a direct variation of y to x by some constant, and this constant is simply the coefficient of the "x" term. Other examples: y=(1/2)x is a direct variation, and the constant of variation is 1/2 y=-9x is a direct variation, and the constant of variation is -9