No. If you square 1/6, you get 1/36, which is considerably smaller than 3. The square root of 3 is actually an irrational number - i.e. cannot be represented by a ratio of integers (fraction). The approximate value of the square root of three is 1.73205101, which lies between the values of 1 2/3 and 1 5/6
It is i/3 where i is the imaginary number which is the square root of -1.
It is: 4/1 or simply as 4
2 root 3 over 2, so square root of 3
I think it is the square root of 5.
1 over (3 times the square root of 6)
It is i/3 where i is the imaginary number which is the square root of -1.
root 3 - 1 all over 2
It is: 4/1 or simply as 4
2 root 3 over 2, so square root of 3
The square root of 1/9 is 1/3 because the square root of 1 is 1 and the square root of 9 is 3.
square root (y) / Square root (3) root (y) / 1.73
Yes and it is 1/3
The square root of the fraction 4/9 is either 2/3 or -2/3
sqrt(1/9) = 1/3
I think it is the square root of 5.
Yes, the expression 2 divided by 2 square root 3 can be simplified. To simplify this expression, we need to rationalize the denominator. Multiplying both the numerator and the denominator by the conjugate of the denominator (2 square root 3), we get (2 * 2 square root 3) / (2 * 2 square root 3 * 2 square root 3). This simplifies to 4 square root 3 / 12, which further simplifies to square root 3 / 3.
x + y = 1xy = 1y = 1 - xx(1 - x) = 1x - x^2 = 1-x^2 + x - 1 = 0 or multiplying all terms by -1;(-x^2)(-1) + (x)(-1) - (1)(-1) = 0x^2 - x + 1 = 0The roots are complex numbers. Use the quadratic formula and find them:a = 1, b = -1, and c = 1x = [-b + square root of (b^2 - (4)(a)(c)]/2a orx = [-b - square root of (b^2 - (4)(a)(c)]/2aSox = [-(-1) + square root of ((-1)^2 - (4)(1)(1)]/2(1)x = [1 + square root of (1 - 4]/2x = [1 + square root of (- 3)]/2 orx = [1 + square root of (-1 )(3)]/2; substitute (-1) = i^2;x = [1 + square root of (i^2 )(3)]/2x = [1 + (square root of 3)i]/2x = 1/2 + [i(square root of 3]/2 andx = 1/2 - [i(square root of 3)]/2Since we have two values for x, we will find also two values for yy = 1 - xy = 1 - [1/2 + (i(square root of 3))/2]y = 1 - 1/2 - [i(square root of 3)]/2y = 1/2 - [i(square root of 3)]/2 andy = 1 - [1/2 - (i(square root of 3))/2)]y = 1 - 1/2 + [i(square root of 3))/2]y = 1/2 + [i(square root of 3)]/2Thus, these numbers are:1. x = 1/2 + [i(square root of 3)]/2 and y = 1/2 - [i(square root of 3)]/22. x = 1/2 - [i(square root of 3)]/2 and y = 1/2 + [i(square root of 3)]/2Let's check this:x + y = 11/2 + [i(square root of 3)]/2 +1/2 - [i(square root of 3)]/2 = 1/2 + 1/2 = 1xy = 1[1/2 + [i(square root of 3)]/2] [1/2 - [i(square root of 3)]/2]= (1/2)(1/2) -(1/2)[i(square root of 3)]/2] + [i(square root of 3)]/2](1/2) - [i(square root of 3)]/2] [i(square root of 3)]/2]= 1/4 - [i(square root of 3)]/4 + [i(square root of 3)]/4 - (3i^2)/4; substitute ( i^2)=-1:= 1/4 - [(3)(-1)]/4= 1/4 + 3/4= 4/4=1In the same way we check and two other values of x and y.