The exponential distribution and the Poisson distribution.
The moment generating function is M(t) = Expected value of e^(xt) = SUM[e^(xt)f(x)] and for the Poisson distribution with mean a inf = SUM[e^(xt).a^x.e^(-a)/x!] x=0 inf = e^(-a).SUM[(ae^t)^x/x!] x=0 = e^(-a).e^(ae^t) = e^[a(e^t -1)]
Yes.
Why belong exponential family for poisson distribution
Divide the total number of incidents by the total time. The result, representing the average number of incidents per unit of time, is the mean as well as the variance of the Poisson distribution.
Using the Taylor series expansion of the exponential function. See related links
The exponential distribution and the Poisson distribution.
The moment generating function is M(t) = Expected value of e^(xt) = SUM[e^(xt)f(x)] and for the Poisson distribution with mean a inf = SUM[e^(xt).a^x.e^(-a)/x!] x=0 inf = e^(-a).SUM[(ae^t)^x/x!] x=0 = e^(-a).e^(ae^t) = e^[a(e^t -1)]
The Poisson distribution. The Poisson distribution. The Poisson distribution. The Poisson distribution.
The Poisson distribution is discrete.
Yes.
Why belong exponential family for poisson distribution
we compute it by using their differences
Divide the total number of incidents by the total time. The result, representing the average number of incidents per unit of time, is the mean as well as the variance of the Poisson distribution.
A poisson process is a non-deterministic process where events occur continuously and independently of each other. An example of a poisson process is the radioactive decay of radionuclides. A poisson distribution is a discrete probability distribution that represents the probability of events (having a poisson process) occurring in a certain period of time.
Poisson and Binomial both the distribution are used for defining discrete events.You can tell that Poisson distribution is a subset of Binomial distribution. Binomial is the most preliminary distribution to encounter probability and statistical problems. On the other hand when any event occurs with a fixed time interval and having a fixed average rate then it is Poisson distribution.
The Poisson distribution is a discrete distribution, with random variable k, related to the number events. The discrete probability function (probability mass function) is given as: f(k; L) where L (lambda) is the mean and square root of lambda is the standard deviation, as given in the link below: http://en.wikipedia.org/wiki/Poisson_distribution