answersLogoWhite

0

A differential equation is a measure of change. If differencing with respect to time, it is the rate of change. Location, when differentiated, gives velocity. Velocity, when differentiated, gives acceleration. There are significant applications across all aspects of science.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve

Add your answer:

Earn +20 pts
Q: Scientific significance of Differential equation
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the difference between an ordinary differential equation and a partial differential equation?

ordinary differential equation is obtained only one independent variable and partial differential equation is obtained more than one variable.


What is the general solution of a differential equation?

It is the solution of a differential equation without there being any restrictions on the variables (No boundary conditions are given). Presence of arbitrary constants indicates a general solution, the number of arbitrary constants depending on the order of the differential equation.


Heat equation partial differential?

Yes, it is.


What is an Airy equation?

An Airy equation is an equation in mathematics, the simplest second-order linear differential equation with a turning point.


What is nonlinear ordinary differential equation?

An ordinary differential equation is an equation relating the derivatives of a function to the function and the variable being differentiated against. For example, dy/dx=y+x would be an ordinary differential equation. This is as opposed to a partial differential equation which relates the partial derivatives of a function to the partial variables such as d²u/dx²=-d²u/dt². In a linear ordinary differential equation, the various derivatives never get multiplied together, but they can get multiplied by the variable. For example, d²y/dx²+x*dy/dx=x would be a linear ordinary differential equation. A nonlinear ordinary differential equation does not have this restriction and lets you chain as many derivatives together as you want. For example, d²y/dx² * dy/dx * y = x would be a perfectly valid example