tan(9) + tan(81) - tan(27) - tan(63) = 4
Chat with our AI personalities
Using trigonometry its height works out as 63 meters to the nearest meter. -------------------------------------------------------------------------------------------------------- let: h = height building α, β be the angles of elevation (29° and 37° in some order) d be the distance between the elevations (30 m). x = distance from building where the elevation of angle α is measured. Then: angle α is an exterior angle to the triangle which contains the position from which angle α is measured, the position from which angle β is measured and the point of the top of the building. Thus angle α = angle β + angle at top of building of this triangle → angle α > angle β as the angle at the top of the building is > 0 → α = 37°, β = 29° Using the tangent trigonometric ratio we can form two equations, one with angle α, one with angle β: tan α = h/x → x = h/tan α tan β = h/(x + d) → x = h/tan β - d → h/tan α = h/tan β - d → h/tan β - 1/tan α = d → h(1/tan β - 1/tan α) = d → h(tan α - tan β)/(tan α tan β) = d → h = (d tan α tan β)/(tan α - tan β) We can now substitute the values of α, β and x in and find the height: h = (30 m × tan 37° × tan 29°)/(tan 37° - tan 29°) ≈ 63 m
6 plus 6 plus 63 plus 63 plus 36 plus 36 is equal to 210.
50 + 63 + 72 + 63 + 137 + 172 = 557
24 + 63 = 87
1000 + 56 + 63 = 1,119