why the exponents can not be negative
polynomial
No. It would not be a polynomial function then.
Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.
The sum of the exponents for two variables in a polynomial or algebraic expression is called the degree of the term. For example, in the term (x^m y^n), the degree is (m + n). This concept helps determine the overall degree of the polynomial when combining multiple terms.
Polynomial
Terms
polynomial
Yes, it is since it is a finite sum and the terms all have non-negative exponents.
No. It would not be a polynomial function then.
The degree of a polynomial is the highest degree of its terms. The degree of a term is the sum of the exponents of the variables that appear in it.For example, the polynomial 8x2y3 + 5x - 10 has three terms. The first term has a degree of 5, the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial is degree five.
Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.
A polynomial term must have only a positive integer exponent for its variable(s). As we know a term is a number or a multiplication of a number and one or more variables associated by their exponents. Examples of terms: 2, -x, 3x2y, √5x5y-9z3w, 8x-7, 3/5, x2/3/y ect. Examples of polynomial terms: -10, -15z, √2x3y2z, 3x2y, ect.
The degree of a polynomial is the highest degree of its terms. The degree of a term is the sum of the exponents of the variables that appear in it.7x2y2 + 4x2 + 5y + 13 is a polynomial with four terms. The first term has a degree of 4, the second term has a degree of 2, the third term has a degree of 1 and the fourth term has a degree of 0. The polynomial has a degree of 4.
The sum of the exponents for two variables in a polynomial or algebraic expression is called the degree of the term. For example, in the term (x^m y^n), the degree is (m + n). This concept helps determine the overall degree of the polynomial when combining multiple terms.
Polynomial
highest total of the exponents
Degree of a Polynomial