difference between
difference between
difference between
The length of the transverse axis of a hyperbola is determined by the value of (2a), where (a) is the distance from the center to each vertex along the transverse axis. In the standard forms of hyperbolas, such as ((x-h)^2/a^2 - (y-k)^2/b^2 = 1) or ((y-k)^2/a^2 - (x-h)^2/b^2 = 1), (a) represents this distance. Therefore, to find the length of the transverse axis, you would use the expression (2a).
true
The length of the transverse axis of a hyperbola is given by the expression ( 2a ), where ( a ) is the distance from the center of the hyperbola to each vertex along the transverse axis. For a hyperbola centered at the origin with the standard form ( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 ) (horizontal transverse axis) or ( \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 ) (vertical transverse axis), the value of ( a ) determines the extent of the transverse axis. Thus, the transverse axis length varies directly with ( a ).
difference between
difference between
I suggest that the answer is that the statement is false.
The same as the major axis.
The length of the transverse axis of a hyperbola is determined by the value of (2a), where (a) is the distance from the center to each vertex along the transverse axis. In the standard forms of hyperbolas, such as ((x-h)^2/a^2 - (y-k)^2/b^2 = 1) or ((y-k)^2/a^2 - (x-h)^2/b^2 = 1), (a) represents this distance. Therefore, to find the length of the transverse axis, you would use the expression (2a).
a - b
true
The length of the transverse axis of a hyperbola is given by the expression ( 2a ), where ( a ) is the distance from the center of the hyperbola to each vertex along the transverse axis. For a hyperbola centered at the origin with the standard form ( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 ) (horizontal transverse axis) or ( \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 ) (vertical transverse axis), the value of ( a ) determines the extent of the transverse axis. Thus, the transverse axis length varies directly with ( a ).
difference between TPate
you
The length of the transverse axis of a hyperbola is determined by the distance between the two vertices, which are located along the transverse axis. For a hyperbola defined by the equation ((y - k)^2/a^2 - (x - h)^2/b^2 = 1) (vertical transverse axis) or ((x - h)^2/a^2 - (y - k)^2/b^2 = 1) (horizontal transverse axis), the length of the transverse axis is (2a), where (a) is the distance from the center to each vertex.
True