Zero.
For a normal probability distribution to be considered a standard normal probability distribution, it must have a mean of 0 and a standard deviation of 1. This standardization allows for the use of z-scores, which represent the number of standard deviations a data point is from the mean. Any normal distribution can be transformed into a standard normal distribution through the process of standardization.
with mean and standard deviation . Once standardized, , the test statistic follows Standard Normal Probability Distribution.
with mean of and standard deviation of 1.
The normal distribution and the t-distribution are both symmetric bell-shaped continuous probability distribution functions. The t-distribution has heavier tails: the probability of observations further from the mean is greater than for the normal distribution. There are other differences in terms of when it is appropriate to use them. Finally, the standard normal distribution is a special case of a normal distribution such that the mean is 0 and the standard deviation is 1.
Only the mean, because a normal distribution has a standard deviation equal to the square root of the mean.
For a normal probability distribution to be considered a standard normal probability distribution, it must have a mean of 0 and a standard deviation of 1. This standardization allows for the use of z-scores, which represent the number of standard deviations a data point is from the mean. Any normal distribution can be transformed into a standard normal distribution through the process of standardization.
with mean and standard deviation . Once standardized, , the test statistic follows Standard Normal Probability Distribution.
with mean of and standard deviation of 1.
a mean of 1 and any standard deviation
The normal distribution and the t-distribution are both symmetric bell-shaped continuous probability distribution functions. The t-distribution has heavier tails: the probability of observations further from the mean is greater than for the normal distribution. There are other differences in terms of when it is appropriate to use them. Finally, the standard normal distribution is a special case of a normal distribution such that the mean is 0 and the standard deviation is 1.
The mean must be 0 and the variance must be 1.
Only the mean, because a normal distribution has a standard deviation equal to the square root of the mean.
The mean of a standard normal curve is 0. This curve, which is a type of probability distribution known as the standard normal distribution, is symmetric and bell-shaped, centered around the mean. Additionally, the standard deviation of a standard normal curve is 1, which helps define the spread of the data around the mean.
probability is 43.3%
The mean of a standard normal distribution is 0.
The standard normal distribution has a mean of 0 and a standard deviation of 1.
The probability of the mean plus or minus 1.96 standard deviations is 0. The probability that a continuous distribution takes any particular value is always zero. The probability between the mean plus or minus 1.96 standard deviations is 0.95