a small myelinated axon
The beginning stage of an After Action Review is planning. Following the planning stage, in order, are preparing, conducting and following up.
The beginning stage of an After Action Review is planning. Following the planning stage, in order, are preparing, conducting and following up.
Yes, but that is not relevant. The important thing is the frequency of action potential
mentoring
Determine how to do the task differently next time.
myelinated, large diameter fibres
Myelinated axons with a larger diameter will conduct action potentials the fastest due to saltatory conduction, where the action potential jumps from one node of Ranvier to the next, skipping the myelin-covered regions. Smaller-diameter and unmyelinated axons will conduct action potentials more slowly.
The conduction velocity of an action potential depends on the diameter of the axon and the presence of a myelin sheath. A larger axon diameter and the presence of myelin increase conduction velocity by allowing for faster propagation of the action potential.
Schwann cells enhance the velocity of electrical transmission of an action potential along an axon in the peripheral nervous system by forming a myelin sheath around the axon. This myelin sheath insulates the axon, allowing for faster conduction of the action potential through a process known as saltatory conduction.
Oligodendrocyte
A synapse and an action potential have a flip-flopping cause and effect relationship, in that an action potential in a presynaptic neuron initiates a release of neurotransmitters across a synapse, which can then subsequently potentially trigger an action potential in the axon of the postsynaptic neuron, which would then cause release of neurotransmitters across a following synapse.
No because you can't fastest.
In physiology, an action potential is a short-lasting event in which the electrical membrane potential rapidly rises and falls, following a consistent trajectoryAn action potential occurs when a neuron sends information down an axon, away from the cell body.
Propagation of the action potential along the sarcolemma
For an action potential to transmit it's dependent on three major factors. 1. Size of action potential - greater size and rate of depolarization greater the action potential 2. Cell diameter- greater diameter, greater potential think of water pipes, wider pipes potentially carry more water 3. Myelination. For the idiot that said friction, in the world of neuroscience in which this question was posted under, friction is not the right answer. You are not physically moving something. It's all about conductance, read the right chapter in physics. Myelination reduces current leaks allowing the majority of conductance to reach the node. Thus myelination increases speed and strength of transmissions. Velocity is least dependent on anything other than these three. I hope that answers your question. However, it was kind of vague so, working bakeries from the question seemed the best way to go
The relative refractory period is the phase of the cardiac action potential during which a stronger-than-usual stimulus is required to elicit another action potential. It occurs immediately following the absolute refractory period and allows for the heart muscle to be able to respond to a second, stronger stimulus after the initial action potential.
The negative after-potential is a brief hyperpolarization phase following an action potential in a neuron. This phase occurs as potassium ions continue to exit the cell, leading to a temporary increase in membrane potential beyond the resting state. It is important for re-establishing the resting membrane potential and preparing the neuron for the next action potential.