answersLogoWhite

0

Georg Friedrich Bernhard Riemann was a prominent German mathematician known for his contributions to various fields, including analysis, differential geometry, and number theory. He formulated the Riemann hypothesis, one of the most important unsolved problems in mathematics, which relates to the distribution of prime numbers. His work on Riemann surfaces laid the groundwork for modern complex analysis, while his contributions to Riemannian geometry have had a profound impact on the development of general relativity. Additionally, Riemann introduced the concept of the integral that bears his name, advancing the understanding of convergence in analysis.

User Avatar

AnswerBot

2mo ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Who was the most popular mathematician?

This is impossible to give as a fact as everybody will have a different opinion. the top ten is 1. Leonhard Euler 2. Carl Friedrich Gauss 3. G. F. Bernhard Riemann 4. Euclid 5. René Descartes 6. Alan Turing 7. Leonardo Pisano Blgollo (a.k.a. Leonardo Fibonacci) 8. Isaac Newton and Wilhelm Leibniz 9. Andrew Wiles 10. Pythagoras


Rules of differentiation?

Assume f=f(x), g=g(x)and (f^-1)(x) is the functional inverse of f(x). (f+g)'=f'+g' (f*g)'=f'*g+f*g' product rule (f(g))'=g'*f'(g) compositional rule (f/g)'=(f'*g-f*g')/(g^2) quotient rule (d/dx)(x^r)=r*x^(r-1) power rule and applies for ALL r. where g^2 is g*g not g(g)


Is The composition of an odd function and an odd function even?

The composition of two odd functions is an even function. If ( f(x) ) and ( g(x) ) are both odd, then for their composition ( (f \circ g)(x) = f(g(x)) ), we have ( (f \circ g)(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -(f \circ g)(x) ). Thus, ( (f \circ g)(x) ) satisfies the definition of an even function.


In the function g f x f depends on g and g depends on x?

In the function ( g(f(x)) ), ( f ) is a function that takes ( x ) as input and produces an output used as input for ( g ). Here, ( g ) depends on the output of ( f ), meaning that ( g ) processes the result obtained from ( f(x) ). Consequently, the overall function ( g(f(x)) ) showcases a composition where the behavior of ( g ) is influenced by the behavior of ( f ) in relation to ( x ).


When was Pierre De fermat's last theorem created?

PIERRE DE FERMAT's last Theorem. (x,y,z,n) belong ( N+ )^4.. n>2. (a) belong Z F is function of ( a.) F(a)=[a(a+1)/2]^2 F(0)=0 and F(-1)=0. Consider two equations F(z)=F(x)+F(y) F(z-1)=F(x-1)+F(y-1) We have a string inference F(z)=F(x)+F(y) equivalent F(z-1)=F(x-1)+F(y-1) F(z)=F(x)+F(y) infer F(z-1)=F(x-1)+F(y-1) F(z-x-1)=F(x-x-1)+F(y-x-1) infer F(z-x-2)=F(x-x-2)+F(y-x-2) we see F(z-x-1)=F(x-x-1)+F(y-x-1 ) F(z-x-1)=F(-1)+F(y-x-1 ) F(z-x-1)=0+F(y-x-1 ) give z=y and F(z-x-2)=F(x-x-2)+F(y-x-2) F(z-x-2)=F(-2)+F(y-x-2) F(z-x-2)=1+F(y-x-2) give z=/=y. So F(z-x-1)=F(x-x-1)+F(y-x-1) don't infer F(z-x-2)=F(x-x-2)+F(y-x-2) So F(z)=F(x)+F(y) don't infer F(z-1)=F(x-1)+F(y-1) So F(z)=F(x)+F(y) is not equivalent F(z-1)=F(x-1)+F(y-1) So have two cases. [F(x)+F(y)] = F(z) and F(x-1)+F(y-1)]=/=F(z-1) or vice versa So [F(x)+F(y)]-[F(x-1)+F(y-1)]=/=F(z)-F(z-1). Or F(x)-F(x-1)+F(y)-F(y-1)=/=F(z)-F(z-1). We have F(x)-F(x-1) =[x(x+1)/2]^2 - [(x-1)x/2]^2. =(x^4+2x^3+x^2/4) - (x^4-2x^3+x^2/4). =x^3. F(y)-F(y-1) =y^3. F(z)-F(z-1) =z^3. So x^3+y^3=/=z^3. n>2. .Similar. We have a string inference G(z)*F(z)=G(x)*F(x)+G(y)*F(y) equivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z)=G(x)*F(x)+G(y)*F(y) infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) we see G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=G(x)*F(-1)+G(y)*F(y-x-1 ) G(z)*F(z-x-1)=0+G(y)*F(y-x-1 ) give z=y. and G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)*F(-2)+G(y)*F(y-x-2) G(z)*F(z-x-2)=G(x)+G(y)*F(y-x-2) x>0 infer G(x)>0. give z=/=y. So G(z)*F(z-x-1)=G(x)*F(x-x-1)+G(y-x-1)*F(y) don't infer G(z)*F(z-x-2)=G(x)*F(x-x-2)+G(y)*F(y-x-2) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) don't infer G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So G(z)*F(z)=G(x)*F(x)+G(y)*F(y) is not equiivalent G(z)*F(z-1)=G(x)*F(x-1)+G(y)*F(y-1) So have two cases [G(x)*F(x)+G(y)*F(y)]=G(z)*F(z) and [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z-1)*F(z-1) or vice versa. So [G(x)*F(x)+G(y)*F(y)] - [ G(x)*F(x-1)+G(y)*F(y-1)]=/=G(z)*[F(z)-F(z-1)]. Or G(x)*[F(x) - F(x-1)] + G(y)*[F(y)-F(y-1)]=/=G(z)*[F(z)-F(z-1).] We have x^n=G(x)*[F(x)-F(x-1) ] y^n=G(y)*[F(y)-F(y-1) ] z^n=G(z)*[F(z)-F(z-1) ] So x^n+y^n=/=z^n Happy&Peace. Trần Tấn Cường.

Related Questions

What did g f bernhard riemann discover?

dont no


What has the author G Riemann written?

G. Riemann has written: 'Die taubstumm-blinden' -- subject(s): Blind, Deaf, Education


What nicknames does Bernhard Gaudian go by?

Bernhard Gaudian goes by Bernie G.


How do you play what makes you beautiful on a recorder?

a-g-f-f-f-f-f-f-f-g-a-g-a-g-f-f-f-f-f-f-f-f-f-a-g-g-a-g-f-f-g-a-a-a-a-a-a-g-f


Who established the first orphans home in ebenzer?

The first orphanage in Ebenezer, also known as the Ebenezer Orphans Home, was established by George Müller in the mid-19th century. Müller, a Christian evangelist and philanthropist, founded the home in Bristol, England, in 1836 to care for orphaned children. His work was characterized by a reliance on prayer and faith, and he became well-known for his commitment to providing for the needs of orphans without soliciting donations. The Ebenezer home became a model for similar institutions worldwide.


How do you play what makes you beautiful on recorder?

a-g-f-f-f-f-f-f-f-g-a-g-a-g-f-f-f-f-f-f-f-f-f-a-g-g-a-g-f-f-g-a-a-a-a-a-a-g-f that is only chorus


How do you play baby on flute?

Baby by: Justin BieberF G F F A G F E D E D F A G F E D E D F A G F G G F EF C2 A G A F C2 A G F C2 A G A F C2 A G F C2 C2 A G F C2 C2 A GF F A G A G A G A G A G F C2 A G A C2 A G F C2 G A F F G F F F A A G F GF F G G G G G G A G F F G FChorus: A G A G A G C2 G A G A G A G D2 G A G A G A G C2 A G A A A G FA G A G A G C2 G A G A G A G D2 G A G A G A G C2 A G A A A G F-Rossele-Send more requests @ycel_gandah@Yahoo.comTy!


What has the author Bernhard G Funck written?

Bernhard G. Funck has written: 'Konflikte im Steuerrecht' -- subject(s): Taxation, Law and legislation, Tax administration and procedure


What are the notes to fireflies on a trumpet?

C g g f g f c c d d c d f g a g f c c g f d c g g f g f c d d c d f g c c a g f c a g d f a g f c a g f g c f e d c e d c d f a g f d d f a g c d f f a g f d f g c g g f g f c c d d c d f g a g f c a g f d c g g f g f c d d c d f g c c a g f c a g d f a g f c a g f g c f e d c e d c d f a g f d d f a g c d f f a g f d f g c g f g f g f c c d f c d f c g g-f g-f g-a-f c d f c d f c g g-f g-f g-f-d c d f c d f c g g-f g-f g-a-f


How do you play baby on the flute?

Baby by: Justin BieberF G F F A G F E D E D F A G F E D E D F A G F G G F EF C2 A G A F C2 A G F C2 A G A F C2 A G F C2 C2 A G F C2 C2 A GF F A G A G A G A G A G F C2 A G A C2 A G F C2 G A F F G F F F A A G F GF F G G G G G G A G F F G FChorus: A G A G A G C2 G A G A G A G D2 G A G A G A G C2 A G A A A G FA G A G A G C2 G A G A G A G D2 G A G A G A G C2 A G A A A G F-Rossele-Send more requests @ycel_gandah@yahoo.comTy!


What is the keyboard notes for just the way you are?

C c f g ac f g a g f g ff f g a g b a f g fc f g ac f g a g f f g ff f g a g b a f g f


What are the piano notes for if i ain't got you?

right hand:E G F G F G G G G G G G G Left hand G F F F F F G F F F E E