Height, weight, IQ,
Chat with our AI personalities
The normal distribution is very important in statistical analysis. A considerable amount of data follows a normal distribution: the weight and length of items mass-produced usually follow a normal distribution ; and if average demand for a product is high, then demand usually follows a normal distribution. It is possible to show that when the sample is large, the sample mean follows a normal distribution. This result is important in the construction of confidence intervals and in significance testing. In quality control procedures for a mean chart, the construction of the warning and action lines is based on the normal distribution.
with mean and standard deviation . Once standardized, , the test statistic follows Standard Normal Probability Distribution.
normal distribution
normal distribution
If the population distribution is roughly normal, the sampling distribution should also show a roughly normal distribution regardless of whether it is a large or small sample size. If a population distribution shows skew (in this case skewed right), the Central Limit Theorem states that if the sample size is large enough, the sampling distribution should show little skew and should be roughly normal. However, if the sampling distribution is too small, the sampling distribution will likely also show skew and will not be normal. Although it is difficult to say for sure "how big must a sample size be to eliminate any population skew", the 15/40 rule gives a good idea of whether a sample size is big enough. If the population is skewed and you have fewer that 15 samples, you will likely also have a skewed sampling distribution. If the population is skewed and you have more that 40 samples, your sampling distribution will likely be roughly normal.