Want this question answered?
Be notified when an answer is posted
Chat with our AI personalities
In the context of matrix algebra there are more operations that one can perform on a square matrix. For example you can talk about the inverse of a square matrix (or at least some square matrices) but not for non-square matrices.
A matrix and a scalar is a matrix. S + M1 = M2. A scalar is a real number whose square is positive. A matrix is an array of numbers, some of which are scalars and others are vectors, square of the number is negative. A matrix can be a quaternion, the sum of a scalars and three vectors.
A complex number a + bi, can be represented as a 2x2 matrix: [a -b] [b a ] or [a b ] [-b a ] , just keep the same notation throughout your work. See the wikipedia article on Complex Numbers, and the related link for some more information.
A singular matrix is a matrix that is not invertible. If a matrix is not invertible, then:• The determinant of the matrix is 0.• Any matrix multiplied by that matrix doesn't give the identity matrix.There are a lot of examples in which a singular matrix is an idempotent matrix. For instance:M =[1 1][0 0]Take the product of two M's to get the same M, the given!M x M = MSo yes, SOME singular matrices are idempotent matrices! How? Let's take a 2 by 2 identity matrix for instance.I =[1 0][0 1]I x I = I obviously.Then, that nonsingular matrix is also idempotent!Hope this helps!
Advantages are that you can see the arc lengths disadvantages some times it doesn't work because of insufficient vertices's or arcs.