Chat with our AI personalities
In the context of matrix algebra there are more operations that one can perform on a square matrix. For example you can talk about the inverse of a square matrix (or at least some square matrices) but not for non-square matrices.
A matrix and a scalar is a matrix. S + M1 = M2. A scalar is a real number whose square is positive. A matrix is an array of numbers, some of which are scalars and others are vectors, square of the number is negative. A matrix can be a quaternion, the sum of a scalars and three vectors.
A complex number a + bi, can be represented as a 2x2 matrix: [a -b] [b a ] or [a b ] [-b a ] , just keep the same notation throughout your work. See the wikipedia article on Complex Numbers, and the related link for some more information.
A singular matrix is a matrix that is not invertible. If a matrix is not invertible, then:• The determinant of the matrix is 0.• Any matrix multiplied by that matrix doesn't give the identity matrix.There are a lot of examples in which a singular matrix is an idempotent matrix. For instance:M =[1 1][0 0]Take the product of two M's to get the same M, the given!M x M = MSo yes, SOME singular matrices are idempotent matrices! How? Let's take a 2 by 2 identity matrix for instance.I =[1 0][0 1]I x I = I obviously.Then, that nonsingular matrix is also idempotent!Hope this helps!
Advantages are that you can see the arc lengths disadvantages some times it doesn't work because of insufficient vertices's or arcs.