10 = r + 3 Subtract 3 from each side: 7 = r
1) If it is: (r^22)(r^3) = r^(22 + 3) = r^25 (Just add powers) 2) If it is: (r^2)(2)(r^3) = 2[r^(2 + 3)] = 2r^5
R/4 = 1/3 r/4*4 = 1/3 *4 r=4/3
(3) x (r) which means 3 times its radius.
-13
The formula of a sphere, in modern terms, originates from calculus. Given that the area of a circle a(r) = pi*r^2 the definite integration of a(r) from -r to r, the area of the circle rotated around a plane, z, leads to V(r) = definite integral of -r -> r [pi*y^2]dx where r^2 = x^2 + y^2, from the distance formula, so r^2 = x^2 - y^2 V(r) = definite integral of -r -> r [pi(x^2-y^2)]dx V(r) = integral of 0 -> r minus integral of -r -> 0 V(r) = pi(r^3 - (r^3)/3) - pi(-r^3 + (r^3)/3), collect terms V(r) = (2pi*r^3)/3 + (2pi*r^3)/3 V(r) = (4pi*r^3)/3
10 = r + 3 Subtract 3 from each side: 7 = r
1) If it is: (r^22)(r^3) = r^(22 + 3) = r^25 (Just add powers) 2) If it is: (r^2)(2)(r^3) = 2[r^(2 + 3)] = 2r^5
#include<stdio.h> #include<conio.h> void main() { int a[3][3],b[3][3],c[3][3],r,c; for(r=0;r<=3;r++) { for(c=0;c<3;c++) { printf("\n enter the value="); scanf("%d%d",&a[r][c],&b[r][c]); } } printf("\n first matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) { printf("%d\t",a[r][c]); } printf("\n"); } printf("\n scond matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) {printf("%d\t",b[r][c]); } printf("\n"); } printf("\n sum of given matrix=\n"); for(r=0;r<=3;r++) { for(c=0;c<3;c++) { c[r][c]=a[r][c]+b[r][c]; printf("%d\t",c[r][c]); } printf("\n"); } getch(); }
R/4 = 1/3 r/4*4 = 1/3 *4 r=4/3
Area = 4*pi*radius2 and volume = 4/3*pi*radius3 And: 4*pi*r*r divided by 4/3*pi*r*r*r => 3*4*pi*r*r/4*pi*r*r*r Then by cancelling it becomes: 3/r Check: If radius is 6 then it is 3/6 or 1/2 Check: If radius is 0.5 then it is 3/0.5 or 6 Check: If radius is 11 then it is 3/11
3 Wheels on a Reliant Robin.
(3) x (r) which means 3 times its radius.
-13
V=i*r 18-15=3*r r=3/3=1 ohm
The volume of a sphere is (4/3)*pi*(r^3), where r is the radius. Solving for r: (4/3)*pi*(r^3) = 268 (r^3) = 268/((4/3)*pi) r = cube root(268/((4/3)*pi)), which is approximately cube root (63.98), which is approximately, 4.00 m.
Find the possible values of r in the inequality 5 > r - 3.Answer: r < 8