All the optimization problems in Computer Science have a predecessor analogue in continuous domain and they are generally expressed in the form of either functional differential equation or partial differential equation. A classic example is the Hamiltonian Jacobi Bellman equation which is the precursor of Bellman Ford algorithm in CS.
Some partial differential equations do not have analytical solutions. These can only be solved numerically.
Partial differential equations are great in calculus for making multi-variable equations simpler to solve. Some problems do not have known derivatives or at least in certain levels in your studies, you don't possess the tools needed to find the derivative. So, using partial differential equations, you can break the problem up, and find the partial derivatives and integrals.
Partial differential equations are mathematical equations that involve two or more independent variables, an unknown function, and partial derivatives of the unknown function. Even the explanation is confusing! If, however, anyone chooses to learn about PDE there are classes offered at any institution of higher learning.
What's the question?
Very often because no analytical solution is available.
Lars Garding has written: 'Cauchy's problem for hyperbolic equations' -- subject(s): Differential equations, Partial, Exponential functions, Partial Differential equations 'Applications of the theory of direct integrals of Hilbert spaces to some integral and differential operators' -- subject(s): Differential equations, Partial, Hilbert space, Partial Differential equations
J. L Blue has written: 'B2DE' -- subject(s): Computer software, Differential equations, Elliptic, Differential equations, Nonlinear, Differential equations, Partial, Elliptic Differential equations, Nonlinear Differential equations, Partial Differential equations
David L. Colton has written: 'Analytic theory of partial differential equations' -- subject(s): Differential equations, Partial, Numerical solutions, Partial Differential equations 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations
George Francis Denton Duff has written: 'Partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'Differential equations of applied mathematics' -- subject(s): Differential equations, Differential equations, Partial, Mathematical physics, Partial Differential equations
Fritz John has written: 'Partial differential equations, 1952-1953' -- subject(s): Differential equations, Partial, Partial Differential equations 'Fritz John collected papers' 'Partial differential equations' 'On finite deformations of an elastic material' 'Plane waves and spherical means applied to partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations 'On behavior of solutions of partial differential equations'
Elemer E. Rosinger has written: 'Generalized solutions of nonlinear partial differential equations' -- subject(s): Differential equations, Nonlinear, Differential equations, Partial, Nonlinear Differential equations, Numerical solutions, Partial Differential equations 'Distributions and nonlinear partial differential equations' -- subject(s): Differential equations, Partial, Partial Differential equations, Theory of distributions (Functional analysis)
Jianhong Wu has written: 'Theory and applications of partial functional differential equations' -- subject(s): Functional differential equations
Richard Haberman has written: 'Applied Partial Differential Equations' 'Elementary applied partial differential equations' -- subject(s): Boundary value problems, Differential equations, Partial, Fourier series, Partial Differential equations
Bernard Friedman has written: 'Techniques in solving partial differential equations' -- subject(s): Partial Differential equations 'Lectures on applications-oriented mathematics' -- subject(s): Mathematics
P. Quittner has written: 'Superlinear parabolic problems' -- subject(s): Differential equations, Elliptic, Differential equations, Parabolic, Differential equations, Partial, Elliptic Differential equations, Parabolic Differential equations, Partial Differential equations
All the optimization problems in Computer Science have a predecessor analogue in continuous domain and they are generally expressed in the form of either functional differential equation or partial differential equation. A classic example is the Hamiltonian Jacobi Bellman equation which is the precursor of Bellman Ford algorithm in CS.
Enzo Mitidieri has written: 'Apriori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities' -- subject(s): Differential equations, Nonlinear, Differential equations, Partial, Inequalities (Mathematics), Nonlinear Differential equations, Partial Differential equations