answersLogoWhite

0

In order to find the area of a circle, the important thing is to the find the radius first.

Given that the circumference of a circle is 2πr (where r=radius), then

Circle 1: 2πr=25π or r=25/2

Circle 2: 2πr=75π or r=75/2

The area of a circle is πr2. Therefore,

Area of Circle 1: π(25/2)2=625π/4

Area of Circle 2: π(75/2)2=5625π/4

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

How do you divide 20 by 50?

an easy way to do it is to first draw two and a half circles,(circles represent 20s)then first divide the two full circles(not including the half circle).So now we have two 20s.You should know that 10 divided by 2 equals 5 so divide that ten and there you go you have 25 for your answer!


How many circles of all sizes are in a circle with 25 1 inch circles?

a circle has 4 sides


If the similarity ratio of two similar octagons is 3 to 5 what is the ratio of the areas of the octagons?

9:25


The ratio of the corrresponding edge lengths of two similar soilds is 4 5 what is the ratio of their surface areas?

The ratio of their surface areas is 42 to 52 or 16 to 25


How do you find the similarity ratios of two regular octagons with areas of 18 inches and 50 inches?

The ratio of areas is 18:50 which simplifies to 9:25 or 9/25 So the ratio of their sides is sqrt(9/25) = sqrt(9)/sqrt(25) = 3/5 That is, the linear ratio is 3:5


If the measure of two corresponding sides of two similar prisms is 4 meters and 5 meters what is the ratio of the surface areas of the prisms?

16/25


The ratio of the corresponding edge lengths of two similar solids is 4 5 What is the ratio of their surface areas?

16:25


The ratio of the corresponding edge lengths of two similar solids is 2 5 What is the ratio of their surface areas?

4:25


The two solids below are similar and the ratio between the lengths of their edges is 45. What is the ratio of their surface areas?

16:25


The ratio of the surface areas of two similar solids is 25 121 What is the ratio of their corresponding side lengths?

5:11


What is the answer to finding the area of 4 semi-circles with the diameter of 10 centimeters?

-6


The two solids below are similar and the ratio between the lengths of their edges is 35. What is the ratio of their surface areas?

If the lengths are in the ratio 3:5, then the surface areas are in the ratio 9:25.