A MPC 1000 sampling production station has many amazing features such as 32-voice stereo sampling, 64-tracking sequence, and 16 velocity and pressure-sensitive MPC pads.
Chat with our AI personalities
Generally in marketing, it is the cost per 1000 on a production run.
comber production inkg/hr= nips/min X feed/nip X lap wt in (gms/mtrs) X 60X 8 X (1+W%/100)/1000 X 1000
Get ready, 5 quinquagintillion in Roman Numerals is:(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((V)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))That is 5 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000 x 1000.It's also the same as 5.0 x 10^153
1GHz is the same as 1000MHz, so 8GHz is 8000MHz. Kilo = 1000 Mega = 1000*1000 Giga = 1000*1000*1000 Tera = 1000*1000*1000*1000 Peta = 1000*1000*1000*1000*1000 And so on.
In some situations stratified random sampling may be more appropriate. You may have a population which can be divided up into a number of subsets (strata) such that the difference between units in different strata is much greater than the difference between units within each stratum. A probability sample may not have enough units from some of the smaller strata. A stratified random sample will ensure that each stratum is represented proportionally. In other situations, cluster sampling may be more appropriate. Suppose you wish to visit a sample 1% of all schools in the country. If you were to choose the schools by probability sampling they would be all over the country and you would require a huge amount of time and money to visit them all. What you could do, instead, is to divide up the country into 1000 regions. Select 10 of these regions (1%) and then visit every school in the selected regions. Far less running around!