The multiples of any number are endless, but here are the multiples of eight to 100:081624324048566472808896
' 1 ' is a factor of every whole number . . . . . 100 of them' 2 ' is a factor of every even number . . . . . 50 of them' 3 ' has 33 multiples up to 100 . . . . . 33 of them' 4 ' has 25 multiples up to 100 . . . . . 25 of them' 5 ' has 20 multiples up to 100 . . . . . 20 of them' 6 ' has 16 multiples up to 100 . . . . . 16 of them' 7 ' has 14 multiples up to 100 . . . . . 14 of them' 8 ' has 12 multiples up to 100 . . . . . 12 of them' 9 ' has 11 multiples up to 100 . . . . . 11 of themTotal . . . . . . . . . . . . . . . . . . . . . . . . . 281 one-digit factors in all whole numbers 1 to 100 .
multiples of 8 are also multiples of 2 because anything you times by 8 is an even number
8,16,24,32,40,48,56,64,72,80,88,96
Just 72. It was found by multiplying 8 and 9. --------------------------------------- The common multiples of two numbers are the multiples of their lowest common multiple. LCM(8, 9) = 72 The common multiples of 8 and 9 are 72, 144, 216, ... The only common multiples less than 100 are 72 only.
The multiples of any number are endless, but here are the multiples of eight to 100:081624324048566472808896
There are 12 multiples of 8 in 1 to 100.
There are floor(100/8)=12 multiples of 8 between 1 and 100. 12/100*100=12%
How about 80
Assuming you mean that you want the number of multiples of each, then for 1-100: number of multiples of 2 = 50 number of multiples of 3 = 33 number of multiples of 4 = 25 number of multiples of 6 = 16 number of multiples of 8 = 12 number of multiples of 9 = 11 Assuming you mean that you want the numbers that are multiples of 2, 3, 4, 6, 8 or 9, then some numbers may be multiples of more than one (for example 12 is a multiple of 2, 3, 4 and 6) and so a straight addition of the number of multiples of each cannot be done: Consider 2, 4 and 8 Every multiple of 4 or 8 is also a multiple of 2, so all the multiples of 4 and 8 are counted by the multiples of 2. Consider 3 and 9 Every multiple of 9 is also a multiple of 3, so all the multiples of 9 are counted by the multiple of 3 Consider 2, 3 and 6. Every multiple of 6 is an even multiple of 3, so are counted in both the multiples of 2 and 3. So the total number of multiples of 2, 3, 4, 6, 8 or 9 is the number of multiples of 2 plus the number of multiples of 3 minus the number of multiples of 6: For 1 to 100, Number of multiples of 2 = 50 Number of multiples of 3 = 33 Number of multiples of 6 = 16 So number of multiples of 2, 3, 4, 6, 8 or 9 in 1-100 is 50+33-16 = 67. Assuming you mean that they are multiples of all of 2, 3, 4, 6, 8 and 9, then they must be multiples of the lowest common multiple of 2, 3, 4, 6 ,8, 9 2 = 21, 3 = 31, 4 = 22, 6 = 2131, 8 = 23, 9 = 32 LCM = highest power of the primes used = 2332 = 72 Thus all numbers that are multiples of 2, 3, 4, 6, 8 and 9 are multiples of 72, which means between 1 and 100 only 1 number is a multiple of all of them, namely 72
' 1 ' is a factor of every whole number . . . . . 100 of them' 2 ' is a factor of every even number . . . . . 50 of them' 3 ' has 33 multiples up to 100 . . . . . 33 of them' 4 ' has 25 multiples up to 100 . . . . . 25 of them' 5 ' has 20 multiples up to 100 . . . . . 20 of them' 6 ' has 16 multiples up to 100 . . . . . 16 of them' 7 ' has 14 multiples up to 100 . . . . . 14 of them' 8 ' has 12 multiples up to 100 . . . . . 12 of them' 9 ' has 11 multiples up to 100 . . . . . 11 of themTotal . . . . . . . . . . . . . . . . . . . . . . . . . 281 one-digit factors in all whole numbers 1 to 100 .
8,16,24,32,40,48,56,64,72,80,88,96.
A infinitesimally small fraction. There are infinitely any multiples of 8 and only a few of them are in 1-100.
multiples of 8 are also multiples of 2 because anything you times by 8 is an even number
The only number that has 8 and 5 as multiples is 1. If you meant factors, try 400.
There are an infinite number of multiples of 8; 8, 16, 24, 32, ...
4- 1,2,4 8-1,2,4,8 multiples are anything you can multiply to get your number