1. A nonparametric statistic has no inference
2. A nonparametric statistic has no standard error
3. A nonparametric statistic is an element in a base population (universe of possibilities) where every possible event in the population is known and can be characterized
* * * * *
That is utter rubbish and a totally irresponsible answer.
In parametric statistics, the variable of interest is distributed according to some distribution that is determined by a small number of parameters. In non-parametric statistics there is no underlying parametric distribution.
With non-parametric data you can compare between two (or more) possible distributions (goodness-of-fit), test for correlation between variables.
Some test, such as the Student's t, chi-square are applicable for parametric as well as non-parametric statistics.
I have, therefore, no idea where the previous answerer got his/her information from!
Nonparametric tests are sometimes called distribution free statistics because they do not require that the data fit a normal distribution. Nonparametric tests require less restrictive assumptions about the data than parametric restrictions. We can perform the analysis of categorical and rank data using nonparametric tests.
Differences between Classification and Tabulation
Parametric statistical tests assume that the data belong to some type of probability distribution. The normal distribution is probably the most common. That is, when graphed, the data follow a "bell shaped curve".On the other hand, non-parametric statistical tests are often called distribution free tests since don't make any assumptions about the distribution of data. They are often used in place of parametric tests when one feels that the assumptions of the have been violated such as skewed data.For each parametric statistical test, there is one or more nonparametric tests. A one sample t-test allows us to test whether a sample mean (from a normally distributed interval variable) significantly differs from a hypothesized value. The nonparametric analog uses the One sample sign test In one sample sign test,we can compare the sample values to the a hypothesized median (not a mean). In other words we are testing a population median against a hypothesized value k. We set up the hypothesis so that + and - signs are the values of random variables having equal size. A data value is given a plus if it is greater than the hypothesized mean, a negative if it is less, and a zero if it is equal.he sign test for a population median can be left tailed, right tailed, or two tailed. The null and alternative hypothesis for each type of test will be one of the following:Left tailed test: H0: median ≥ k and H1: median < kRight tailed test: H0: median ≤ k and H1: median > kTwo tailed test: H0: median ≠ k and H1: median = kTo use the sign test, first compare each entry in the sample to the hypothesized median k.If the entry is below the median, assign it a - sign.If the entry is above the median, assign it a + sign.If the entry is equal to the median, assign it a 0.Then compare the number of + and - signs. The 0′s are ignored.If there is a large difference in the number of + and - signs, then it is likely that the median is different from the hypothesized value and the null hypothesis should be rejected.When using the sign test, the sample size n is the total number of + and - signs.If the sample size > 25, we use the standard normal distribution to find the critical values and we find the test statistic by plugging n and x into a formula that can be found on the link.When n ≤ 25, we find the test statistic x, by using the smaller number of + or - .So if we had 10 +'s and 5 -'s, the test statistic x would be 5. The zeros are ignored.I will provided a link to some nonparametric test that goes into more detail. The information about the Sign Test was just given as an example of one of the simplest nonparametric test so one can see how these tests work The Wilcoxon Rank Sum Test, The Mann-Whitney U test and the Kruskal-Wallis Test are a few more common nonparametric tests. Most statistics books will give you a list of the pros and cons of parametric vs noparametric tests.
what is the relationships between statistics and accounting
Parametric equations not only give a more general solution to a problem, but they also display the relationship between the parameters, thus providing a better understanding of the what the solution suggests.
Nonparametric tests are sometimes called distribution free statistics because they do not require that the data fit a normal distribution. Nonparametric tests require less restrictive assumptions about the data than parametric restrictions. We can perform the analysis of categorical and rank data using nonparametric tests.
Parametric tests draw conclusions based on the data that are drawn from populations that have certain distributions. Non-parametric tests draw fewer conclusions about the data set. The majority of elementary statistical methods are parametric because they generally have larger statistical outcomes. However, if the necessary conclusions cannot be drawn about a data set, non-parametric tests are then used.
The simplest answer is that parametric statistics are based on numerical data from which descriptive statistics can be calculated, while non-parametric statistics are based on categorical data. Takes two example questions: 1) Do men live longer than women, and 2), are men or women more likely to be statisticians. In the first example, you can calculate the average life span of both men and women and then compare the two averages. This is a parametric test. But in the second, you cannot calculate an average between "man" and "woman" or between "statistician" or "non-statistician." As there is no numerical data to work with, this would be a non-parametric test. The difference is vitally important. Because inferential statistics require numerical data, it is possible to estimate how accurate a parametric test on a sample is compared to the relevant population. However, it is not possible to make this estimation with non-parametric statistics. So while non-parametric tests are still used in many studies, they are often regarded as less conclusive than parametric statistics. However, the ability to generalize sample results to a population is based on more than just inferential statistics. With careful adherence to accepted random sampling, sample size, and data collection conventions, non-parametric results can still be generalizable. It is just that the accuracy of that generalization can not be statistically verified.
Differences between Classification and Tabulation
Parametric are the usual tests you learn about. Non-parametric tests are used when something is very "wrong" with your data--usually that they are very non-normally distributed, or N is very small. There are a variety of ways of approaching non-parametric statistics; often they involve either rank-ordering the data, or "Monte-Carlo" random sampling or exhaustive sampling from the data set. The whole idea with non-parametrics is that since you can't assume that the usual distribution holds (e.g., the X² distribution for the X² test, normal distribution for t-test, etc.), you use the calculated statistic but apply a new test to it based only on the data set itself.
Parametric statistical tests assume that the data belong to some type of probability distribution. The normal distribution is probably the most common. That is, when graphed, the data follow a "bell shaped curve".On the other hand, non-parametric statistical tests are often called distribution free tests since don't make any assumptions about the distribution of data. They are often used in place of parametric tests when one feels that the assumptions of the have been violated such as skewed data.For each parametric statistical test, there is one or more nonparametric tests. A one sample t-test allows us to test whether a sample mean (from a normally distributed interval variable) significantly differs from a hypothesized value. The nonparametric analog uses the One sample sign test In one sample sign test,we can compare the sample values to the a hypothesized median (not a mean). In other words we are testing a population median against a hypothesized value k. We set up the hypothesis so that + and - signs are the values of random variables having equal size. A data value is given a plus if it is greater than the hypothesized mean, a negative if it is less, and a zero if it is equal.he sign test for a population median can be left tailed, right tailed, or two tailed. The null and alternative hypothesis for each type of test will be one of the following:Left tailed test: H0: median ≥ k and H1: median < kRight tailed test: H0: median ≤ k and H1: median > kTwo tailed test: H0: median ≠ k and H1: median = kTo use the sign test, first compare each entry in the sample to the hypothesized median k.If the entry is below the median, assign it a - sign.If the entry is above the median, assign it a + sign.If the entry is equal to the median, assign it a 0.Then compare the number of + and - signs. The 0′s are ignored.If there is a large difference in the number of + and - signs, then it is likely that the median is different from the hypothesized value and the null hypothesis should be rejected.When using the sign test, the sample size n is the total number of + and - signs.If the sample size > 25, we use the standard normal distribution to find the critical values and we find the test statistic by plugging n and x into a formula that can be found on the link.When n ≤ 25, we find the test statistic x, by using the smaller number of + or - .So if we had 10 +'s and 5 -'s, the test statistic x would be 5. The zeros are ignored.I will provided a link to some nonparametric test that goes into more detail. The information about the Sign Test was just given as an example of one of the simplest nonparametric test so one can see how these tests work The Wilcoxon Rank Sum Test, The Mann-Whitney U test and the Kruskal-Wallis Test are a few more common nonparametric tests. Most statistics books will give you a list of the pros and cons of parametric vs noparametric tests.
Parametric, since we may assume that the salaries of male and female employees follow normal distributions.
There are few differences between the B.Sc in Maths and B.Sc in Statistics Visit the Related Link to know more about B.Sc stats.
Hi, Parametric constraint can be set up to maintain relationships and drive design changes. In this example, the radius of the circle is the driving dimension. Changing the radius of the circle, changes the length of the lines, while the parametric constraints maintain the relationships between the shapes- preserving the design intent.
Hi, Parametric constraint can be set up to maintain relationships and drive design changes. In this example, the radius of the circle is the driving dimension. Changing the radius of the circle, changes the length of the lines, while the parametric constraints maintain the relationships between the shapes- preserving the design intent.
What is the difference between statistics and parameter
CPI is the consumer price index. It is a measure of inflation created using various statistics and indicies compiled by the Bureau of Labor Statistics Core CPI is the same number that excludes food and energy