Want this question answered?
Be notified when an answer is posted
None of them.
The answer is the Temperature.
grid
They do not have any specific name.
You may have neglected to copy something else that goes with the question, as there are no "above lines".
No, lines of a particular element do not appear at the same wavelength in both emission and absorption line spectra. In absorption spectra, dark lines are seen where specific wavelengths are absorbed by elements in a cooler outer layer of a star or a cooler interstellar cloud. In contrast, emission spectra display bright lines when elements emit specific wavelengths of light at higher energy levels.
They have broad emission lines of highly ionized elements.
Absorption of energy at atom energy levels cause the line spectrum.
Spectra lines are specific wavelengths of light emitted or absorbed by elements. Each element has a unique set of spectral lines, which allows scientists to identify elements present in a sample by comparing the observed spectra to known patterns, similar to how fingerprints are unique to individuals.
Line spectra are composed of distinct, discrete lines of light at specific wavelengths, while continuous spectra consist of a continuous range of wavelengths without distinct lines. Line spectra are produced by excited atoms emitting light at specific energy levels, while continuous spectra are emitted by hot, dense objects like stars. Line spectra are unique to each element and can be used to identify elements, while continuous spectra are characteristic of hot, dense objects emitting thermal radiation.
Yes, emission lines spectra are considered fingerprints of elements because each element emits light at specific wavelengths unique to that element. By analyzing the pattern of emission lines in a spectrum, scientists can identify the elements present in a sample.
There are a couple of things that cause specific lines to appear in a line spectrum. Two of these things are density and wavelength.
The emission spectra for hydrogen and helium differ because each element has a unique arrangement of electrons in their atoms. This arrangement causes them to emit different wavelengths of light when excited, resulting in distinct spectral lines.
Atomic spectra are like fingerprints of elements because each element has a unique set of discreet emission or absorption lines in its spectrum. These lines correspond to specific energy levels of electrons within the atoms of that element. By analyzing the pattern and position of these lines in a spectrum, scientists can identify the elements present in a sample.
Emission spectra consist of discrete, colored lines at specific wavelengths, corresponding to the emission of photons as electrons transition from higher to lower energy levels. Each element has a unique emission spectrum due to its specific electron configuration and energy levels. Emission spectra are useful for identifying elements present in a sample and are commonly used in analytical chemistry and astronomy.
Need a different, better answer.
AutoCorrect feature.