answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What causes specific lines to appear in a line spectra?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Do lines of a particular element appear at the same wavelength in both emission and absorption line spectra?

No, lines of a particular element do not appear at the same wavelength in both emission and absorption line spectra. In absorption spectra, dark lines are seen where specific wavelengths are absorbed by elements in a cooler outer layer of a star or a cooler interstellar cloud. In contrast, emission spectra display bright lines when elements emit specific wavelengths of light at higher energy levels.


How would the spectra from galaxies appear?

They have broad emission lines of highly ionized elements.


What causes spectra lines?

Absorption of energy at atom energy levels cause the line spectrum.


What is meant by the statement spectra lines are the fingerprints of elements?

Spectra lines are specific wavelengths of light emitted or absorbed by elements. Each element has a unique set of spectral lines, which allows scientists to identify elements present in a sample by comparing the observed spectra to known patterns, similar to how fingerprints are unique to individuals.


Are emission lines spectra considered fingerprints of elements?

Yes, emission lines spectra are considered fingerprints of elements because each element emits light at specific wavelengths unique to that element. By analyzing the pattern of emission lines in a spectrum, scientists can identify the elements present in a sample.


What causes specific lines to appear in a line spectrum?

There are a couple of things that cause specific lines to appear in a line spectrum. Two of these things are density and wavelength.


Why do we say atomic spectra are like fingerprints of the elements?

Atomic spectra are like fingerprints of elements because each element has a unique set of discreet emission or absorption lines in its spectrum. These lines correspond to specific energy levels of electrons within the atoms of that element. By analyzing the pattern and position of these lines in a spectrum, scientists can identify the elements present in a sample.


What statement of emission spectra is correct?

Emission spectra consist of discrete, colored lines at specific wavelengths, corresponding to the emission of photons as electrons transition from higher to lower energy levels. Each element has a unique emission spectrum due to its specific electron configuration and energy levels. Emission spectra are useful for identifying elements present in a sample and are commonly used in analytical chemistry and astronomy.


Why do stellar spectra have absorption lines?

Need a different, better answer.


what automatic feature causes red and green lines to appear under words as you type?

AutoCorrect feature.


How do scientists use different spectra to figure out the composition of the stars outer layer?

Different chemical elements emit (or absorb) certain specific frequencies of light. When the light from a star is split in to it's rainbow spectrum of light, certain parts of the spectrum will be black (in absorption spectra) or brighter (in emission spectra). By comparing these lines to the known emission and absorption spectra of elements, the composition of a stars atmosphere can be determined.


How are the elements identified from bright light line spectra?

Elements are identified from bright light line spectra by analyzing the unique pattern of emission lines produced when the element is heated. Each element emits a specific set of wavelengths of light, resulting in a distinct spectral fingerprint that can be compared to known spectra to determine the element present. This technique is known as spectroscopy and is commonly used in chemistry and astronomy.