answersLogoWhite

0

Let us go step by step

Period = 2 pi ./l/g

Or frequency = 1/2pi * ./g/l

Or 2 pi frequency = angular frequency = ./g/l

As we reduce the length by 4 times i.e 1/4 l then we have angular frequency doubled.

Hence reduce the length to 0.25 l

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

What is the formula for calculating the angular frequency of a simple pendulum?

The formula for calculating the angular frequency of a simple pendulum is (g / L), where represents the angular frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


What is the formula for the angular frequency of a simple pendulum in terms of the acceleration due to gravity and the length of the pendulum?

The formula for the angular frequency () of a simple pendulum is (g / L), where g is the acceleration due to gravity and L is the length of the pendulum.


How can I calculate the angular frequency, frequency, and period of a simple pendulum?

To calculate the angular frequency of a simple pendulum, use the formula (g / L), where g is the acceleration due to gravity and L is the length of the pendulum. The frequency can be found by using the formula f / (2), and the period can be calculated as T 1 / f.


What is the relationship between the length of a pendulum and its angular acceleration?

The relationship between the length of a pendulum and its angular acceleration is that a longer pendulum will have a smaller angular acceleration, while a shorter pendulum will have a larger angular acceleration. This is because the length of the pendulum affects the time it takes for the pendulum to swing back and forth, which in turn affects its angular acceleration.


How does the frequency vary with the length of a pendulum?

The frequency of a pendulum varies with the square of the length.


How does frequency of a pendulum vary with its length?

The frequency of a pendulum is inversely proportional to the square root of its length.


How does the length of a pendulum affect the frequency?

A longer pendulum will have a smaller frequency than a shorter pendulum.


How does mass affect pendulum frequency?

The frequency of a pendulum is not affected by its mass. The frequency is determined by the length of the pendulum and the acceleration due to gravity. A more massive pendulum will swing at the same frequency as a less massive one if they have the same length.


What happens to the frequency of a pendulum if you shorten the string?

If you shorten the length of the string of a pendulum, the frequency of the pendulum will increase. This is because the period of a pendulum is directly proportional to the square root of its length, so reducing the length will decrease the period and increase the frequency.


What are the factor affecting on the simple pendulum?

The factors affecting a simple pendulum include the length of the string, the mass of the bob, the angle of displacement from the vertical, and the acceleration due to gravity. These factors influence the period of oscillation and the frequency of the pendulum's motion.


A simple pendulum has a frequency of oscillation f In order to double f the length of the pendulum should be?

To double the frequency of oscillation of a simple pendulum, you would need to reduce the length by a factor of four. This is because the frequency of a simple pendulum is inversely proportional to the square root of the length. Mathematically, f = (1 / 2π) * √(g / L), so doubling f requires reducing L by a factor of four.


How does amplitude of a pendulum affect frequency?

The amplitude of a pendulum does not affect its frequency. The frequency of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The period of a pendulum (which is inversely related to frequency) depends only on these factors, not on the amplitude of the swing.