The statement is true that a sampling distribution is a probability distribution for a statistic.
The parent probability distribution from which the statistic was calculated is referred to as f(x) and cumulative distribution function as F(x). The sampling distribution and cumulative distribution of a statistic is commonly referred to as g(y) and G(y) where Y is the random variable representing the statistic. There are numerous other notations.
See: http://en.wikipedia.org/wiki/Confidence_interval Includes a worked out example for the confidence interval of the mean of a distribution. In general, confidence intervals are calculated from the sampling distribution of a statistic. If "n" independent random variables are summed (as in the calculation of a mean), then their sampling distribution will be the t distribution with n-1 degrees of freedom.
A chi-squared test is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-squared distribution when the null hypothesis is true.
Also normally distributed.
The statement is true that a sampling distribution is a probability distribution for a statistic.
The sampling distribution for a statistic is the distribution of the statistic across all possible samples of that specific size which can be drawn from the population.
The mean of the sampling distribution is the population mean.
The parent probability distribution from which the statistic was calculated is referred to as f(x) and cumulative distribution function as F(x). The sampling distribution and cumulative distribution of a statistic is commonly referred to as g(y) and G(y) where Y is the random variable representing the statistic. There are numerous other notations.
See: http://en.wikipedia.org/wiki/Confidence_interval Includes a worked out example for the confidence interval of the mean of a distribution. In general, confidence intervals are calculated from the sampling distribution of a statistic. If "n" independent random variables are summed (as in the calculation of a mean), then their sampling distribution will be the t distribution with n-1 degrees of freedom.
Sampling distribution in statistics works by providing the probability distribution of a statistic based on a random sample. An example of this is figuring out the probability of running out of water on a camping trip.
A statistic based on a sample is an estimate of some population characteristic. However, samples will differ and so the statistic - which is based on the sample - will take different values. The sampling distribution gives an indication of ho accurate the sample statistic is to its population counterpart.
The standard deviation associated with a statistic and its sampling distribution.
It is the sampling distribution of that variable.
A chi-squared test is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi-squared distribution when the null hypothesis is true.
A sampling distribution function is a probability distribution function. Wikipedia gives this definition: In statistics, a sampling distribution is the probability distribution, under repeated sampling of the population, of a given statistic (a numerical quantity calculated from the data values in a sample). I would add that the sampling distribution is the theoretical pdf that would ultimately result under infinite repeated sampling. A sample is a limited set of values drawn from a population. Suppose I take 5 numbers from a population whose values are described by a pdf, and calculate their average (mean value). Now if I did this many times (let's say a million times, close enough to infinity) , I would have a relative frequency plot of the mean value which will be very close to the theoretical sampling pdf.
Also normally distributed.