how do you write 4 digit numbers with a 0 in ten and hundred place then use the same number to tell which number is larger
1,000,000,000 = (1 x 109) + (0 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
109
1.46 billion = (1 x 109) + (4 x 108) + (6 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
16,800,000,000 = (1 x 1010) + (6 x 109) + (8 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
To write the expanded form of 109, you would break down the number into its individual place values. In this case, 109 can be expressed as 100 + 0 + 9. Therefore, the expanded form of 109 is 100 + 0 + 9.
this would be 0
Oh, dude, rounding 109 to the nearest 100 is like, super easy. You just look at the tens place, which is zero, and since it's less than 5, you don't need to do anything. So, 109 rounded to the nearest 100 is still 100. Easy peasy, lemon squeezy.
how do you write 4 digit numbers with a 0 in ten and hundred place then use the same number to tell which number is larger
2,000,000,000 = (2 x 109) + (0 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
6,000,000,000 = (6 x 109) + (0 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
1,000,000,000 = (1 x 109) + (0 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
109
1.46 billion = (1 x 109) + (4 x 108) + (6 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
No, 5 is not a factor of 109. All numbers that have 5 as a factor end with 5 or 0.
16,800,000,000 = (1 x 1010) + (6 x 109) + (8 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)
300,000,000,000 = (3 x 1011) + (0 x 1010) + (0 x 109) + (0 x 108) + (0 x 107) + (0 x 106) + (0 x 105) + (0 x 104) + (0 x 103) + (0 x 102) + (0 x 101) + (0 x 100)