"204 S in C B" typically refers to a specific section or paragraph in a legal code or regulation. In this context, "204" would be the section number, "S" could stand for "section," and "C B" likely indicates the code or body of law it pertains to, such as "Civil Bill" or "Criminal Code." To provide a precise interpretation, more context about the legal framework or jurisdiction would be necessary.
Use the Hero's formula: Let s = (a + b + c)/2. Then the area of the triangle equals√[s(s - a)(s - b)(s - c)], where a, b, and c denote the sides of the triangle.
Let the sides be a, b, c Area = sq rt [s(s-a)(s-b)(s-c)] where s= 1/2 (a+b+c)
120 sq metres. To see how you get this answer, read on: If the sides are a, b and c, then calculate s = 0.5*(a+b+c) Then the area is sqrt[s*(s-a)*(s-b)*(s-c)]
The answer depends on the information that you do have. Suppose you know all the edge lengths: the three sides of the triangle are a, b and c and the length of the prism is d. Let s = (a + b + c)/2 Then the area of the triangular cross section is sqrt[s*(s-a)*(s-b)*(s-c)] square units. So, surface area = 2*sqrt[s*(s-a)*(s-b)*(s-c)] + d*(a+b+c) square units. Volume = sqrt[s*(s-a)*(s-b)*(s-c)]*d cubic units.
The proof of this theorem is by contradiction. Suppose for convex sets S and T there are elements a and b such that a and b both belong to S∩T, i.e., a belongs to S and T and b belongs to S and T and there is a point c on the straight line between a and b that does not belong to S∩T. This would mean that c does not belong to one of the sets S or T or both. For whichever set c does not belong to this is a contradiction of that set's convexity, contrary to assumption. Thus no such c and a and b can exist and hence S∩T is convex.
1. A quantum number assigned to baryons and mesons, equal to b + s where b is the baryon and s is the strangeness. 2. A quantum number equal to b + s+ c where the c is the charm.
122 spaces in a Chinese checker board
It is sqrt{s*(s-a)*(s-b)*(s-c)} where the lengths of the three sides are a, b and c units and s = (a+b+c)/2.
This is a rude acronym.
Use the Hero's formula: Let s = (a + b + c)/2. Then the area of the triangle equals√[s(s - a)(s - b)(s - c)], where a, b, and c denote the sides of the triangle.
Suppose the sides are a, b and c units. Calculate s= (a+b+c)/2 Then Area = sqrt[s*(s-a)*(s-b)*(s-c)] square units
Let the sides be a, b, c Area = sq rt [s(s-a)(s-b)(s-c)] where s= 1/2 (a+b+c)
120 sq metres. To see how you get this answer, read on: If the sides are a, b and c, then calculate s = 0.5*(a+b+c) Then the area is sqrt[s*(s-a)*(s-b)*(s-c)]
OK this means " 3 Ships Crossing the South Border on the Captain Deer". By, Dr. Smith
The answer depends on the information that you do have. Suppose you know all the edge lengths: the three sides of the triangle are a, b and c and the length of the prism is d. Let s = (a + b + c)/2 Then the area of the triangular cross section is sqrt[s*(s-a)*(s-b)*(s-c)] square units. So, surface area = 2*sqrt[s*(s-a)*(s-b)*(s-c)] + d*(a+b+c) square units. Volume = sqrt[s*(s-a)*(s-b)*(s-c)]*d cubic units.
The proof of this theorem is by contradiction. Suppose for convex sets S and T there are elements a and b such that a and b both belong to S∩T, i.e., a belongs to S and T and b belongs to S and T and there is a point c on the straight line between a and b that does not belong to S∩T. This would mean that c does not belong to one of the sets S or T or both. For whichever set c does not belong to this is a contradiction of that set's convexity, contrary to assumption. Thus no such c and a and b can exist and hence S∩T is convex.
The information depends on what information is available. For example, for a triangle in which all three sides are known (a, b and c) then calculate s = (a+b+c)/2 And the area = sqrt[s*(s-a)*(s-b)*(s-c)] If a, b and the angle between then, C, is known then area = 0.5*a*b*sin(C). There are other formulae for other circumstances.