If you mean: 7p-3p+4-2 = 2p-1+10 => 4p+2 = 2p+9 => 2p = 7 Therefore: p = 7/2 => p = 3.5
There are 31 ways:1p × 211p × 19 + 2p × 11p × 17 + 2p × 21p × 16 + 5p × 11p × 15 + 2p × 31p × 14 + 2p × 1 + 5p × 11p × 13 + 2p × 41p × 12 + 2p × 2 + 5p × 11p × 11 + 2p × 51p × 11 + 5p × 21p × 10 + 2p × 3 + 5p × 11p × 9 + 2p × 61p × 9 + 2p × 1 + 5p × 21p × 8 + 2p × 4 + 5p1p × 7 + 2p × 71p × 7 + 2p × 2 + 5p × 21p × 6 + 2p × 5 + 5p1p × 6 + 5p × 31p × 5 + 2p × 81p × 5 + 2p × 3 + 5p × 21p × 4 + 2p × 6 + 5p × 11p × 4 + 2p × 1 + 5p × 31p × 3 + 2p × 91p × 3 + 2p × 4 + 5p × 21p × 2 + 2p × 7 + 5p × 11p × 2 + 2p × 2 + 5p × 31p × 1 + 2p × 101p × 1 + 2p × 5 + 5p × 21p × 1 + 5p × 42p × 8 + 5p × 12p × 3 + 5p × 3
29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)
To solve the expression ( 4(-2p - 2) + 2p - 2(5 + 2p) ), start by distributing the terms: ( 4(-2p - 2) = -8p - 8 ) and ( -2(5 + 2p) = -10 - 4p ). Combine all terms: ( -8p - 8 + 2p - 10 - 4p ). Combine like terms: ( (-8p + 2p - 4p) + (-8 - 10) = -10p - 18 ). The final simplified expression is ( -10p - 18 ).
-2p-18
2p
2p
2p
If you mean: 7p-3p+4-2 = 2p-1+10 => 4p+2 = 2p+9 => 2p = 7 Therefore: p = 7/2 => p = 3.5
The GCF is 2p.
1p or if ur luky 2p
It is no longer made from copper because people were weighing it in, in bulk because it fetch more money in weigh than it did in money.
If you mean 8 -2p = 4 then the value of p is 2
3p = 2p + 12 subtract 2p from both sides 3p - 2p = 2p - 2p + 12 1p = 12 p = 12 this is how you solve this problem.
20p, 2p, 2p, 2p, 1p.
2s and 2p 2p can be further divided into 2p(x), 2p(y), and 2p(z), depending on which axis you look at.
There are 31 ways:1p × 211p × 19 + 2p × 11p × 17 + 2p × 21p × 16 + 5p × 11p × 15 + 2p × 31p × 14 + 2p × 1 + 5p × 11p × 13 + 2p × 41p × 12 + 2p × 2 + 5p × 11p × 11 + 2p × 51p × 11 + 5p × 21p × 10 + 2p × 3 + 5p × 11p × 9 + 2p × 61p × 9 + 2p × 1 + 5p × 21p × 8 + 2p × 4 + 5p1p × 7 + 2p × 71p × 7 + 2p × 2 + 5p × 21p × 6 + 2p × 5 + 5p1p × 6 + 5p × 31p × 5 + 2p × 81p × 5 + 2p × 3 + 5p × 21p × 4 + 2p × 6 + 5p × 11p × 4 + 2p × 1 + 5p × 31p × 3 + 2p × 91p × 3 + 2p × 4 + 5p × 21p × 2 + 2p × 7 + 5p × 11p × 2 + 2p × 2 + 5p × 31p × 1 + 2p × 101p × 1 + 2p × 5 + 5p × 21p × 1 + 5p × 42p × 8 + 5p × 12p × 3 + 5p × 3