1,2,4,7,14,28. These are only the whole number factors. Of course, there are an infinite number of solutions to this because all that is required it that xy=28. If x and y are unrestricted, and their domain is all real numbers, there are infinite solutions.
It depends on the polynomial and your degree of sophistication. In the complex domain, it will have six solutions, although not all of them need be different. If the coefficients are all real, then it will have 0, 2, 4 or 6 real solutions in the real domain.
The discriminant is -439 and so there are no real solutions.
You need to be more specific. A quadratic equation will have 2 solutions. The 2 solutions can be equal (such as x² + 2x + 1 = 0, solution is -1 and -1). If one of the solutions is a real number, then the other solution will also be a real number. If one of the solutions is a complex number, then the other solution will also be a complex number. [a complex number has a real component and an imaginary component]In the equation: Ax² + Bx + C = 0. The term [B² - 4AC] will determine if the solution is a double-root, or if the answer is real or complex.if B² = 4AC, then a double-root (real).if B² > 4AC, then 2 real rootsif B² < 4AC, then the quadratic formula will produce a square root of a negative number, and the solution will be 2 complex numbers.If B = 0, then the numbers will be either pure imaginary or real, and negatives of each other [ example 2i and -2i are solutions to x² + 4 = 0]Example of 2 real and opposite sign: x² - 4 = 0; 2 and -2 are solutions.
A quadratic equation can have either two real solutions or no real solutions.
It depends on the equation. Also, the domain must be such that is supports an infinite number of solutions. A quadratic equation, for example, has no real solution if its discriminant is negative. It cannot have an infinite number of solutions. Many trigonometric equations are periodic and consequently have an infinite number of solutions - provided the domain is also infinite. A function defined as follows: f(x) = 1 if x is real f(x) = 0 if x is not real has no real solutions but an infinite number of solutions in complex numbers.
Yes, they can.
0 real solutions. There are other solutions in the complex planes (with i, the imaginary number), but there are no real solutions.
1,2,4,7,14,28. These are only the whole number factors. Of course, there are an infinite number of solutions to this because all that is required it that xy=28. If x and y are unrestricted, and their domain is all real numbers, there are infinite solutions.
It depends on the polynomial and your degree of sophistication. In the complex domain, it will have six solutions, although not all of them need be different. If the coefficients are all real, then it will have 0, 2, 4 or 6 real solutions in the real domain.
The discriminant is -439 and so there are no real solutions.
You need to be more specific. A quadratic equation will have 2 solutions. The 2 solutions can be equal (such as x² + 2x + 1 = 0, solution is -1 and -1). If one of the solutions is a real number, then the other solution will also be a real number. If one of the solutions is a complex number, then the other solution will also be a complex number. [a complex number has a real component and an imaginary component]In the equation: Ax² + Bx + C = 0. The term [B² - 4AC] will determine if the solution is a double-root, or if the answer is real or complex.if B² = 4AC, then a double-root (real).if B² > 4AC, then 2 real rootsif B² < 4AC, then the quadratic formula will produce a square root of a negative number, and the solution will be 2 complex numbers.If B = 0, then the numbers will be either pure imaginary or real, and negatives of each other [ example 2i and -2i are solutions to x² + 4 = 0]Example of 2 real and opposite sign: x² - 4 = 0; 2 and -2 are solutions.
A quadratic equation can have either two real solutions or no real solutions.
An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.
Not necessarily. All rational numbers are real, not all real numbers are rational.
No. All irrational numbers are real, not all real numbers are irrational.
There is no difference between real solutions and real roots.