In the standard equation for an ellipse, b is half the length of the _____ axis.Answer:
An ellipse is the set of each and every point in a place such that the sum of the distance from the foci is constant, Major Axis of the ellipse is the part from side to side the center of ellipse to the larger axis, or the length of that sector. The major diameter is the largest diameter of an ellipse. Below equation is the standard ellipse equation: X2/a + Y2/b = 1, (a > b > 0)
An ellipse is described as [ (x/A)2 + (y/B)2 = C2 ] If [ A=B ] then the ellipse is a circle.
This equation is equal to the first one because it produces the same results, always. ... TL;DR - The circle equation is what you get when you multiply all terms from the ellipse equation by the radius. x^2/a^2 + y^2/b^2 = 1 is an ellipse equation. Well, a circle has a radius where a and b are the same.
x2/a2 + y2/b2 = 1, is the equation of an ellipse with semi-major axes a and b (that's the equivalent of the radius, along the two different axes), centered in the origin.
In the standard equation for an ellipse, b is half the length of the _____ axis.Answer:
horizontal
An ellipse is the set of each and every point in a place such that the sum of the distance from the foci is constant, Major Axis of the ellipse is the part from side to side the center of ellipse to the larger axis, or the length of that sector. The major diameter is the largest diameter of an ellipse. Below equation is the standard ellipse equation: X2/a + Y2/b = 1, (a > b > 0)
An ellipse is described as [ (x/A)2 + (y/B)2 = C2 ] If [ A=B ] then the ellipse is a circle.
If you mean the straight line equation of: y = mx+b then m is the slope and b is the y intercept
If a = b then it is a circle; otherwise it is an ellipse.
This equation is equal to the first one because it produces the same results, always. ... TL;DR - The circle equation is what you get when you multiply all terms from the ellipse equation by the radius. x^2/a^2 + y^2/b^2 = 1 is an ellipse equation. Well, a circle has a radius where a and b are the same.
x2/a2 + y2/b2 = 1, is the equation of an ellipse with semi-major axes a and b (that's the equivalent of the radius, along the two different axes), centered in the origin.
In the equation Y=mx+b, which is what I believe you mean, 'b' is the y intercept of the graph. In other words, if the equation is plotted in standard Cartesian coordinates, the straight line crosses the y-axis at the height b above the x axis.
You know the formula for the area of a circle of radius R. It is Pi*R2. But what about the formula for the area of an ellipse of semi-major axis of length A and semi-minor axis of length B? (These semi-major axes are half the lengths of, respectively, the largest and smallest diameters of the ellipse--- see Figure 1.) For example, the following is a standard equation for such an ellipse centered at the origin: (x2/A2) + (y2/B2) = 1. The area of such an ellipse is Area = Pi * A * B , a very natural generalization of the formula for a circle!
Ellipse formula, centered at the origin, where the vertical axis is the major axis: x2/b2 + y2/a2 = 1, a > b Since the major axis is 8, then a = 4. Since the minor axis is 4, then b = 2. Thus, the equation of the ellipse is: x2/4 + y2/16 = 1.
The moment of inertia of an ellipse about its major axis (x-axis) is given by the equation I = πab^3/4, where a is the length of the semi-major axis and b is the length of the semi-minor axis of the ellipse.