"Multiply the sum of the cells" means to first calculate the total value by adding together the values in specified cells, and then to take that resulting sum and multiply it by another number or value. This process involves two steps: summation and multiplication. For instance, if you have values in cells A1, A2, and A3, you would first sum those values and then multiply the total by a specified factor.
multiply the mean by the amount of numbers
No.The perimeter of a plane shape is the sum of the lengths of all its sides.
Total or sum both means adding numbers together.
Product means to multiply the operands. The product of 5 and 6 is 30. Sum means to add the operands. The sum of 5 and 6 is 11.
To multiply the sum of 16 and 9 by 8, first calculate the sum of 16 and 9, which is 25. Then, multiply 25 by 8. The result is 200. So, (16 + 9) × 8 = 200.
multiply the mean by the amount of numbers
It depends on whether you want multiply or sum!
If you mean circumference just multiply 5 by 3.14 and that's your answer :)
Product= the total of two integers multiplied together Sum= The total of two integers added together
"Product" means to multiply. "Sum" means to add.
Total or sum both means adding numbers together.
No.The perimeter of a plane shape is the sum of the lengths of all its sides.
Distributive Property
The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)The SUM function can total up ranges of cells, or individual cells or values. For example, to sum the values in all the cells from A2 to A20, you could do it like this:=SUM(A2:A20)The AVERAGE function gets an average that is known as the arithmetic mean. It adds up all the values and divides by the number of values it finds. It can be used in the same way as SUM can be, like this:=AVERAGE(A2:A20)
Multiply sum by 2.
Product means to multiply the operands. The product of 5 and 6 is 30. Sum means to add the operands. The sum of 5 and 6 is 11.
To multiply the sum of 16 and 9 by 8, first calculate the sum of 16 and 9, which is 25. Then, multiply 25 by 8. The result is 200. So, (16 + 9) × 8 = 200.