the hypothesis has not been proven wrong.
alternitive hypothesis
In order to solve this you need the null hypothesis value also level of significance only helps you decide whether or not to reject the null hypothesis, is the p-value is above this then you do not reject the null hypothesis, if it is below you reject the null hypothesis Level of significance has nothing to do with the math
The term hypothesis is used in science and statistics. I have included two links related to the these terms.In statistics, the null and alternative hypothesis are mathematical statements used in statistical decision making. An example of a null hypothesis is the mean of the population from which a sample was obtained is equal to 10. The mean of the data is sufficiently different from 10 can be used to reject the null hypothesis.As used in science, hypothesis is the initial idea suggested by observation or preliminary experimentation. See related links.
F is the test statistic and H0 is the means are equal. A small test statistic such as 1 would mean you would fail to reject the null hypothesis that the means are equal.
It means there is no reason why he should reject it, whether because there is no evidence to the contrary or because an experiment set up to test it affirmed that hypothesis.
the hypothesis has not been proven wrong.
It means there is no reason why he should reject it, whether because there is no evidence to the contrary or because an experiment set up to test it affirmed that hypothesis.
It means that she or he has to accept that the existing hypothesis appears to be true.
It means there is no reason why he should reject it, whether because there is no evidence to the contrary or because an experiment set up to test it affirmed that hypothesis.
alternitive hypothesis
That he either found it to be incorrect or heard from a majority of other scientists working in the same field of study that the hypothesis isn't true. Though it's almost always the first one I said.
When a scientist rejects a hypothesis, it means that the data or evidence does not support the initial proposed explanation for a phenomenon. This rejection prompts the scientist to reconsider the hypothesis, gather more data, or formulate a new hypothesis that better fits the observed results.
In order to solve this you need the null hypothesis value also level of significance only helps you decide whether or not to reject the null hypothesis, is the p-value is above this then you do not reject the null hypothesis, if it is below you reject the null hypothesis Level of significance has nothing to do with the math
The term hypothesis is used in science and statistics. I have included two links related to the these terms.In statistics, the null and alternative hypothesis are mathematical statements used in statistical decision making. An example of a null hypothesis is the mean of the population from which a sample was obtained is equal to 10. The mean of the data is sufficiently different from 10 can be used to reject the null hypothesis.As used in science, hypothesis is the initial idea suggested by observation or preliminary experimentation. See related links.
The null hypothesis in a chi-square goodness-of-fit test states that the sample of observed frequencies supports the claim about the expected frequencies. So the bigger the the calculated chi-square value is, the more likely the sample does not conform the expected frequencies, and therefore you would reject the null hypothesis. So the short answer is, REJECT!
the hypothesis might be correct* * * * *The available evidence suggests that the observations were less likely to have been obtained from random variables that were distributed according to the null hypothesis than under the alternative hypothesis against which the null was tested.