answersLogoWhite

0

It means that the boundaries of the set are not included in the set.

For example, consider the set of numbers that are bigger than 1 and smaller than 2. The set is bounded by 1 and 2 but neither of these belong to the set.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: What does it means for a set of numbers to be open?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Summation of a set of numbers?

That means to add all the numbers together.


Does the set of irrational numbers contain the set of real numbers?

Yes. If its irrational it just means that it continues forever with no real pattern. It can still have real numbers


Is the image of an open set under a continuous mapping need not be open?

f(x) = x^{2} is a continuous function on the set R of real numbers, and (-1, 1) is an open set in R, but f(-1, 1) = [0, 1), and [0, 1) is not an open set in R. So, f is not an open function on R.


The densest subset of real numbers is the set of fractions?

Your question is ill-posed. I have not come across a comparison dense-denser-densest. The term "dense" is a topological property of a set: A set A is dense in a set B, if for all y in B, there is an open set O of B, such that O and A have nonempty intersection. The rational numbers are indeed dense in the set of real numbers with the standard topology. An open set containing a real number contains always a rational number. Another way of saying it is that every real number can be approximated to any precision by rational numbers. There are denser sets, if you are willing to consider more elements. Suppose you construct a set consisting of the rational numbers plus all algebraic numbers. The set of algebraic numbers is also countable, but adding them, makes it obviously easier to approximate real numbers. Can you perhaps construct a set less dense than the set of rational numbers? Suppose we take the set of rational numbers without the element 0. Is this set still dense in the real numbers? Yes, because 0 can be approximated by 1/n, n>1. In fact, you can remove finite number of rational numbers from the set of rational numbers and the resulting set will still be dense in the set of the real numbers.


What are examples of infinity sets?

Many infinite sets appear in mathematics: the set of counting numbers; the set of integers; the set of rational numbers; the set of irrational numbers; the set of real numbers; the set of complex numbers. Also, certain subsets of these, such as the set of square numbers, the set of prime numbers, and others.