answersLogoWhite

0

Peanut butter and jelly (sandwich).

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What does p b and j stand for?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Write a program that accepts 15 different numbers and find the LCM and HCM?

/* Program to find LCM/HCF of 15 Nos in C++/ C (replace cin with scanf & cout with printf for c) */ /* Developed by - Kishore Kr. Banerjee - papillon_kish@yahoo.com */ #include <iostream.h> #include <conio.h> main() { int num[3],i,j,p,q,tmp,n1,n2,LCM,rem,flag; clrscr(); for(i=0;i<3;i=i+1) { cout<<"Enter No - "<<i+1<<"="; cin>>num[i]; } clrscr(); n1=num[0]; p=n1; for(i=1;i<3;i=i+1) { n2=num[i]; /* Finding HCF */ q=n2; if(p<q) { tmp=q; q=p; p=tmp; } while(p%q!=0) { rem=p%q; q=p; p=rem; if(p<q) { tmp=q; q=p; p=tmp; } } /*finding LCM */ LCM=1; for(j=1;n1%j==0n2%j==0;j=j+1) { if(n1%j==0) { n1=n1/j; flag=1; } if(n2%j==0) { n2=n2/j; flag=1; } if(flag==1) { LCM=LCM*j; } } LCM=LCM*n1*n2; n1=LCM; } cout<<"the LCM ="<<LCM; cout<<"the hcf ="<<q; getch(); } ----- int gcd (int a, int b) { . int tmp; . if (a<0) a= -a; . if (b<0) b= -b; . if (a<b) tmp= a, a= b, b= tmp; . while (b) { . . tmp= a%b; . . a= b; . . b= tmp; . } . return a; } int gcd_n (int n, const int *vect) { . int i, gcdtmp; . for (i=0, gcdtmp=0; i<n && gcdtmp!=1; ++i) . . gcdtmp= gcd (gcdtmp, vect[i]); . return gcdtmp; } int LCM (int a, int b) { . int d= gcd (a, b); . if (d==0) return d; . else return a/d*b; } int lcm_n (int n, const int *vect) { . int i, lcmtmp; . for (i=0, lcmtmp=1; i<n; ++i) . . lcmtmp= LCM (lcmtmp, vect[i]); . return lcmtmp; }


Formulas on Percentage Base and Rate?

P=B×RB=P÷RR=P÷B


How might two probabilities be added?

If A and B are two events then P(A or B) = P(A) + P(B) - P(A and B)


Top down parser source code in c plus plus?

#include<iostream.h> #include<conio.h> #include<string.h> class parse { int nt,t,m[20][20],i,s,n,p1,q,k,j; char p[30][30],n1[20],t1[20],ch,b,c,f[30][30],fl[30][30]; public: int scant(char); int scannt(char); void process(); void input(); }; int parse::scannt(char a) { int c=-1,i; for(i=0;i<nt;i++) { if(n1[i]==a) { return i; } } return c; } int parse::scant(char b) { int c1=-1,j; for(j=0;j<t;j++) { if(t1[j]==b) { return j; } } return c1; } void parse::input() { cout<<"Enter the number of productions:"; cin>>n; cout<<"Enter the productions one by one"<<endl; for(i=0;i<n;i++) cin>>p[i]; nt=0; t=0; } void parse::process() { for(i=0;i<n;i++) { if(scannt(p[i][0])==-1) n1[nt++]=p[i][0]; } for(i=0;i<n;i++) { for(j=3;j<strlen(p[i]);j++) { if(p[i][j]!='e') { if(scannt(p[i][j])==-1) { if((scant(p[i][j]))==-1) t1[t++]=p[i][j]; } } } } t1[t++]='$'; for(i=0;i<nt;i++) { for(j=0;j<t;j++) m[i][j]=-1; } for(i=0;i<nt;i++) { cout<<"Enter first["<<n1[i]<<"]:"; cin>>f[i]; } for(i=0;i<nt;i++) { cout<<"Enter follow["<<n1[i]<<"]:"; cin>>fl[i]; } for(i=0;i<n;i++) { p1=scannt(p[i][0]); if((q=scant(p[i][3]))!=-1) m[p1][q]=i; if((q=scannt(p[i][3]))!=-1) { for(j=0;j<strlen(f[q]);j++) m[p1][scant(f[q][j])]=i; } if(p[i][3]=='e') { for(j=0;j<strlen(fl[p1]);j++) m[p1][scant(fl[p1][j])]=i; } } for(i=0;i<t;i++) cout<<"\t"<<t1[i]; cout<<endl; for(j=0;j<nt;j++) { cout<<n1[j]; for(i=0;i<t;i++) { cout<<"\t"<<" "; if(m[j][i]!=-1) cout<<p[m[j][i]]; } cout<<endl; } } void main() { clrscr(); parse p; p.input(); p.process(); getch(); }


What is the Formula for odds for either of two events?

If A and B are mutually exclusive event then Probability of A or B is P(A)+P(B). If they are not mutually exclusive then it is that minus the probability of the P(A)+P(B) That is to say P( A or B)= P(A)+P(B)- P(A and B). Of course it is clear that if they are mutually exclusive, P(A and B)=0 and we have the first formula.