well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
A null derivative occurs when an increasing function does not have a derivative. This is most commonly seen in the question mark function.
A linear function, for example y(x) = ax + b has the first derivative a.
The Geometrical meaning of the second derivative is the curvature of the function. If the function has zero second derivative it is straight or flat.
If the second derivative of a function is zero, then the function has a constant slope, and that function is linear. Therefore, any point that belongs to that function lies on a line.
well, the second derivative is the derivative of the first derivative. so, the 2nd derivative of a function's indefinite integral is the derivative of the derivative of the function's indefinite integral. the derivative of a function's indefinite integral is the function, so the 2nd derivative of a function's indefinite integral is the derivative of the function.
Finding the derivative. The derivative is the measure of how a function changes as its input changes.
A null derivative occurs when an increasing function does not have a derivative. This is most commonly seen in the question mark function.
All it means to take the second derivative is to take the derivative of a function twice. For example, say you start with the function y=x2+2x The first derivative would be 2x+2 But when you take the derivative the first derivative you get the second derivative which would be 2
The Geometrical meaning of the second derivative is the curvature of the function. If the function has zero second derivative it is straight or flat.
A linear function, for example y(x) = ax + b has the first derivative a.
If the second derivative of a function is zero, then the function has a constant slope, and that function is linear. Therefore, any point that belongs to that function lies on a line.
A derivative graph tracks the slope of a function.
This means that the function has reached a local maximum or minimum. Since the graph of the derivative crosses the x-axis, then this means the derivative is zero at the point of intersection. When a derivative is equal to zero then the function has reached a "flat" spot for that instant. If the graph of the derivative crosses from positive x to negative x, then this indicates a local maximum. Likewise, if the graph of the derivative crosses from negative x to positive x then this indicates a local minimum.
To get the second derivative of potential energy, you first need to calculate the first derivative of potential energy with respect to the variable of interest. Then, you calculate the derivative of this expression. This second derivative gives you the rate of change of the slope of the potential energy curve, providing insight into the curvature of the potential energy surface.
When the first derivative of the function is equal to zero and the second derivative is positive.
I assume you mean 27 times e to the power x. 1) You take out the constant out. So, the derivative is 27 times the derivative of (e to the power x).2) You use the rule for the exponential function.