The locus of all points such that the sum of the distances from the point to two fixed points is a constant (in this case, 6 cm) is an ellipse. The two fixed points are called the foci of the ellipse. The total distance of 6 cm is the major axis length of the ellipse, indicating that the foci are separated by a distance less than 6 cm, ensuring that the ellipse is defined.
http://en.wikipedia.org/wiki/Elipse
A line in 2D and a plane in 3D A perpendicular bisector of the line connecting the 2 given points
It is the locus of a point such that the sum of its distance from two (distinct) fixed points is a constant. So, given two fixed points, F1 and F2, an ellipse is the locus of the point P such that PF1 + PF2 is a constant. That would be an ellipsoid, a 3 dimensional thing. The 2 distances have to be measured in a fixed (2 dimensional) plane.
Yes, the locus of points concept can be used to define various geometric shapes. A straight line can be defined as the locus of points equidistant from two fixed points, while a circle is the locus of points equidistant from a single fixed point (the center). More complex shapes, such as parabolas, can also be defined as loci; for instance, a parabola can be described as the locus of points equidistant from a fixed point (the focus) and a fixed line (the directrix).
I believe that is the definition of a straight line.
http://en.wikipedia.org/wiki/Elipse
A line in 2D and a plane in 3D A perpendicular bisector of the line connecting the 2 given points
It is the locus of a point such that the sum of its distance from two (distinct) fixed points is a constant. So, given two fixed points, F1 and F2, an ellipse is the locus of the point P such that PF1 + PF2 is a constant. That would be an ellipsoid, a 3 dimensional thing. The 2 distances have to be measured in a fixed (2 dimensional) plane.
Yes, the locus of points concept can be used to define various geometric shapes. A straight line can be defined as the locus of points equidistant from two fixed points, while a circle is the locus of points equidistant from a single fixed point (the center). More complex shapes, such as parabolas, can also be defined as loci; for instance, a parabola can be described as the locus of points equidistant from a fixed point (the focus) and a fixed line (the directrix).
true
triangle
I believe that is the definition of a straight line.
It is the locus of points such that the sum of their distance from two distinct fixed points is a constant.
A circle is the locus of all points equidistant from a given point, which is the center of the circle, and a circle can be drawn with a compass. (The phrase "locus of points for a circle" does not seem to be conventionally defined.) or true
True
true
The locus of points refers to the set of all points that satisfy a given condition or equation. For straight lines, the locus can be defined by a linear equation, while circles are defined as the set of points equidistant from a center point. Parabolas, on the other hand, can be described as the locus of points equidistant from a fixed point (the focus) and a fixed line (the directrix). This concept allows for the geometric representation of various shapes based on specific conditions.