Probably nothing but if the kite happens to hit an are of the wire which is unprotected you may get a shock.
kites stay in the air they follow the air around the same things with bollons if they are let go they would fly away > moving air (wind ) is required, the angle of the kite gives vertical force to the kite, opposing gravity.
If all of the sides of the kite have the same length, and it happens to be the sameas the length of each side of the rhombus, andeach angle of the kite happens to bethe same size as one of the angles of the rhombus, thenthey can be congruent.
Kites stay in the air because of the force exerted on them by moving air (wind). If there were no wind then the kite would fall to the ground. This is because gravity is always trying to pull the kite down. Now the force of wind comes in to play to keep the kite in the air. The kite is at an angle to the ground, and it looks like this slash when it is flying in the air ---> / That is important because as the kite catches the wind two orthogonal forces are applied to the kite. One that is anti-parallel to gravity (Meaning the force is pointing up.) and one that is orthogonal to gravity. We don't necessarily care about the orthogonal force for our example so let's forget about it. The force generated on the kite that is anti-parallel to gravity is what keeps it in the air, so long as the anti-parallel force is greater than the weight of the kite.
the reason is that the kite would not get any air to help it rise up
Potential energy, because of this a kite is not moving.
Air + snake = kite
Probably nothing but if the kite happens to hit an are of the wire which is unprotected you may get a shock.
Yes, flying a kite is a density application because it involves utilizing the density difference between the air inside the kite and the surrounding air to generate lift. By harnessing this density differential, the kite is able to fly in the air.
the kite that fly in the air came first but the geometric one is a kite is a quadrilateral with two pairs of congruent adjacent sides and no opposite sides congruent.
the kite
Air pressure affects lift on a kite by creating a pressure difference between the top and bottom surfaces of the kite. This pressure difference results in a force called lift that allows the kite to rise and stay airborne. Higher air pressure below the kite and lower air pressure above it lead to an upward force that keeps the kite aloft.
you get high as a kite
kites stay in the air they follow the air around the same things with bollons if they are let go they would fly away > moving air (wind ) is required, the angle of the kite gives vertical force to the kite, opposing gravity.
Snake + air makes kite good luck!
katie's kite
A kite