An experimental sample is an experiment that is just a sample of what you are looking for.
A control sample is the experiment under regular conditions. An experimental sample is the experiment in which different variables are changed.
With probability sampling you have no control over the units that are sampled. So the only way to reduce the margin of error is to increase the size of the sample.
EXPERIMENTAL PROBABILITYExperimental probability refers to the probability of an event occurring when an experiment was conducted.)In such a case, the probability of an event is being determined through an actual experiment. Mathematically,Experimental probability=Number of event occurrencesTotal number of trialsFor example, if a dice is rolled 6000 times and the number '5' occurs 990 times, then the experimental probability that '5' shows up on the dice is 990/6000 = 0.165.On the other hand, theoretical probability is determined by noting all the possible outcomes theoretically, and determining how likely the given outcome is. Mathematically,Theoretical probability=Number of favorable outcomesTotal number of outcomesFor example, the theoretical probability that the number '5' shows up on a dice when rolled is 1/6 = 0.167. This is because of the 6 possible outcomes (dice showing '1', '2', '3', '4', '5', '6'), only 1 outcome (dice showing '5') is favorable.As the number of trials keeps increasing, the experimental probability tends towards the theoretical probability. To see this, the number trials should be sufficiently large in number.Experimental probability is frequently used in research and experiments of social sciences, behavioral sciences, economics and medicine.In cases where the theoretical probability cannot be calculated, we need to rely on experimental probability.For example, to find out how effective a given cure for a pathogen in mice is, we simply take a number of mice with the pathogen and inject our cure.We then find out how many mice were cured and this would give us the experimental probability that a mouse is cured to be the ratio of number of mice cured to the total number of mice tested.In this case, it is not possible to calculate the theoretical probability. We can then extend this experimental probability to all mice.It should be noted that in order for experimental probability to be meaningful in research, the sample size must be sufficiently large.In our above example, if we test our cure on 3 mice and all of these are cured, then the experimental probability that a mouse is cured is 1. However, the sample size is too small to conclude that the cure works in 100% of the cases.R\
The confidence interval becomes smaller.
An experimental sample is an experiment that is just a sample of what you are looking for.
It made his actual results approach the results predicted by probability
The statement is false. For a fixed alpha, an increase in the sample size will cause a decrease in beta (but an increase in the power).
In a probability sample, each unit has the same probability of being included in the sample. Equivalently, given a sample size, each sample of that size from the population has the same probability of being selected. This is not true for non-probability sampling.
Yes.
Estimates based on the sample should become more accurate.
A control sample is the experiment under regular conditions. An experimental sample is the experiment in which different variables are changed.
A probability sample is one in which each member of the population has the same probability of being included. An alternative and equivalent definition is that it is a sample such that the probability of selecting that particular sample is the same for all samples of that size which could be drawn from the population.
No, the estimates should become more robust and the power of the test should, therefore, increase.
With probability sampling you have no control over the units that are sampled. So the only way to reduce the margin of error is to increase the size of the sample.
A control sample or control group is used to compare with the experimental group or sample. The control sample ideally, should be exactly the same as the experimental sample except that you don't give your experimental treatment to the control sample. Afterwards you compare the 2 samples to see if your experimental treatment had any kind of effect. The control is like a reference point.
EXPERIMENTAL PROBABILITYExperimental probability refers to the probability of an event occurring when an experiment was conducted.)In such a case, the probability of an event is being determined through an actual experiment. Mathematically,Experimental probability=Number of event occurrencesTotal number of trialsFor example, if a dice is rolled 6000 times and the number '5' occurs 990 times, then the experimental probability that '5' shows up on the dice is 990/6000 = 0.165.On the other hand, theoretical probability is determined by noting all the possible outcomes theoretically, and determining how likely the given outcome is. Mathematically,Theoretical probability=Number of favorable outcomesTotal number of outcomesFor example, the theoretical probability that the number '5' shows up on a dice when rolled is 1/6 = 0.167. This is because of the 6 possible outcomes (dice showing '1', '2', '3', '4', '5', '6'), only 1 outcome (dice showing '5') is favorable.As the number of trials keeps increasing, the experimental probability tends towards the theoretical probability. To see this, the number trials should be sufficiently large in number.Experimental probability is frequently used in research and experiments of social sciences, behavioral sciences, economics and medicine.In cases where the theoretical probability cannot be calculated, we need to rely on experimental probability.For example, to find out how effective a given cure for a pathogen in mice is, we simply take a number of mice with the pathogen and inject our cure.We then find out how many mice were cured and this would give us the experimental probability that a mouse is cured to be the ratio of number of mice cured to the total number of mice tested.In this case, it is not possible to calculate the theoretical probability. We can then extend this experimental probability to all mice.It should be noted that in order for experimental probability to be meaningful in research, the sample size must be sufficiently large.In our above example, if we test our cure on 3 mice and all of these are cured, then the experimental probability that a mouse is cured is 1. However, the sample size is too small to conclude that the cure works in 100% of the cases.R\