To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.
a graph
The graph of a line represents a linear equation in two variables, typically in the form (y = mx + b), where (m) is the slope and (b) is the y-intercept. In contrast, the graph of an inequality in two variables, such as (y < mx + b), includes a region that represents all the solutions to the inequality, often shaded to indicate the area where the inequality holds true. The boundary line for the inequality may be solid (for (\leq) or (\geq)) or dashed (for (<) or (>)). Thus, while both graphs can involve similar lines, their interpretations and representations differ significantly.
Take a sample point from either the top or bottom of the graph. I like to use (0,0) if it is not on the line. Substitute it into the inequality and if it is true then it represents all points on that line as true and vice versa.
To accurately determine which inequality is shown in the graph, I would need to see the graph itself. However, if the graph displays a shaded region above a line, it typically represents a "greater than" inequality (e.g., y > mx + b), while shading below the line indicates a "less than" inequality (e.g., y < mx + b). Additionally, if the line is solid, it indicates that the points on the line are included in the solution (≥ or ≤), whereas a dashed line indicates they are not (>, <).
we should prevent inequality by
y
The Feasible Region
The question cannot be answered because there is no inequality there!
-4
a graph
The graph of a line represents a linear equation in two variables, typically in the form (y = mx + b), where (m) is the slope and (b) is the y-intercept. In contrast, the graph of an inequality in two variables, such as (y < mx + b), includes a region that represents all the solutions to the inequality, often shaded to indicate the area where the inequality holds true. The boundary line for the inequality may be solid (for (\leq) or (\geq)) or dashed (for (<) or (>)). Thus, while both graphs can involve similar lines, their interpretations and representations differ significantly.
The graph of an inequality is a region, not a line.
Take a sample point from either the top or bottom of the graph. I like to use (0,0) if it is not on the line. Substitute it into the inequality and if it is true then it represents all points on that line as true and vice versa.
To accurately determine which inequality is shown in the graph, I would need to see the graph itself. However, if the graph displays a shaded region above a line, it typically represents a "greater than" inequality (e.g., y > mx + b), while shading below the line indicates a "less than" inequality (e.g., y < mx + b). Additionally, if the line is solid, it indicates that the points on the line are included in the solution (≥ or ≤), whereas a dashed line indicates they are not (>, <).
we should prevent inequality by
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
The part that is shaded represents all the possible solutions. An inequality has solutions that are either left or righ, above or below or between two parts of a graph.